Dielectric?


I was listening to Bill Frissell "Nashville" last night. This disk has some of Nashville's best studio musicians working with Bill on a fantastically well recorded session. In the second cut there is the tinniest of cymbal, just shimmering in mid air. I'd never heard it shimmer before. As I continued listening I became aware that my system was pure magic and I took full advantage of the opportunity by playing some of my favorites." WOW, this is amazing" I said to myself with a huge Cheshire cat grin. As I was listening I noticed one of my vacuum cleaner hose speaker cables was hanging down while the other was bent slightly up. "This imperfection must go" so down on the floor working the two cables so that they align. ( I know it's sad, but I'm a perfectionist, I've tried to control it, but...) I'm talking maybe one inch or so, the effect on the coppers molecular structure is small, but I've now taken my closed hand and run it over the majority of length in each cable.
The cables looked good so back to my music. "Where is the magic?" I'd killed it completely, the presentation was flat, the shimmer gone. Oh all the information seemed in place, just no life!
My conclusion, the dielectric had over time created a field beyond the confines of the cable housing and I had discharged it, taking away the added benefit of the extended field. My cables are fully suspended so there is nothing within an inch and a half that can effect the extended dielectric. My amps stay on all the time which would retain the charge in the field even when the system is off.
Does this make sense? It's an easy experiment maybe some of you can try it to see if you have a similar result. I'm feeling like the casing of our cables has more to due with the performance than any of the other factors. The dielectric materials used have the ability to retain a potential charge that can be drawn on during high current demands, the cables dielectric in effect is doing the same job the capacitor dielectric is doing only with less efficiency. Plus some materials benefit in the shielding from other wave energy. Is this "the" factor in our power cord and cable discussions that were not giving the proper attention to.
Should we be discussing what materials best retain a charge and best shield wave forces. My reference to wave forces are of course RF, EMI but I've been thinking, there are far more than just that, there is Microwave, Ex-ray, Grama-ray, all emitted daily from the sun. Solar flares and the intense cosmic radiation have been tied to radio fades and power grid failures, I thing there is a lot to discuss here.
I realize I've exposed myself to great ridicule, but I'm far more interested in what I think I'm learning than playing a fool. Thanks for your thoughts, J.D.
128x128jadem6
all this reminds me of a coversation i had with jeff rowland, maybe 10 or 12 years ago, about his using hex-head stainless steel screws inside his amplifiers. his reponse, gleaned from a japanese audio guru who used tiny hammers and tuning forks to test the "internal resonances" of various components: "nothing doesn't matter." only now do i begin to understand what this means. -kelly
I believe that the dielectric strength is related to the amount of voltage that it takes to force a charge thru the thickness. If air is 20 V/mil that is 20 volts per millimeter. (I don't think the value is right because it takes a few thousand volts of static charge just to jump a 1/4 inch). Dielectric constant (Ke) "is a direct measure of its ability to store electrons as compared to air". Teflon has a Ke of 2.0 and Poylpropylene is 2.1 while air is 1.0001. The more electrons that can be stored, the higher the capacitor value will be for a given physical size. The higher the 'K' factor the more the electric field is distorted in the space around the capacitor. For best sound one need to use the lowest 'K'. So with this in mind we should take bare copper/silver wire and let it hang out in the dry air. There are a few designs that use small spacers and for the most part the dielectric IS air. I hope this helps to lead you to sonic bliss!
To clarify my above post ... An IC could be made with bare wire and spacers. Air is a better dielectric than any other insulator.
Would it make sence that a high K or larger potential storage would be benifitial to a power cord, allowing for a greater discharge potential during extreme current demands?
Jadem6, It is doubtful that the dielectric could make much of a difference in the power delivery of a cable. A farad can deliver one ampere for one second. If a cable is highly capacitive it might muster up 1 uF of capacitance. This is not much current compared to what the power company delivers. Instantaneous current from the power company is determined by wiring and transformers out on the pole and the wiring going to and inside your house. Every connection is a potential source for degrading that current delivery. If you want to improve peak energy storage, the place to do that is in the DC power supply inside your gear.

The other half of the dielectric story has a negative side. It is true that the higher the 'K' the more energy it can store. It also means that the field is non-linear and it will not return 100% of the stored field when requested. In a capacitor this is called dielectric absorption. It is mechanism responsible for producing a small portion of a signal delayed in time. In a power cable this would have very little effect but in a coupling capacitor it is quite detrimental.