Music requires very little average power, unless one listens to sine waves. It is possible that two of 50W amplifiers can be designed with very different headrooms. One might have small headroom being, for instance class A amp while the oder has huge headroom with average power limited only by size of power supply and heatsinks. Amp with higher headroom might appear much louder without distortion.
14dB is rather shallow feedback.
Damping factor of 14 is OK. 8ohm speaker's impedance is mostly resistive. Assuming, that it is approx 6 ohm it limits effective DF to 1.33 . Amps DF of 14 will make it worse only by 9.5% - irrelevant.
There is a lot of local NFB in almost every amp. Any resistance in cathode is a form of NFB. Global NFB doesn't have to create TIM if it is applied within certain limits. It improves pretty much everything - bandwidth, output impedance, THD & IMD. Great sounding amp with small amount of NFB requires great design and quality components. Unfortunately it is cheaper to achieve the same using cheaper design and excessive amount of NFB hence creating overshoots (odd harmonics in frequency domain) and unpleasant bright sound.
14dB is rather shallow feedback.
Damping factor of 14 is OK. 8ohm speaker's impedance is mostly resistive. Assuming, that it is approx 6 ohm it limits effective DF to 1.33 . Amps DF of 14 will make it worse only by 9.5% - irrelevant.
There is a lot of local NFB in almost every amp. Any resistance in cathode is a form of NFB. Global NFB doesn't have to create TIM if it is applied within certain limits. It improves pretty much everything - bandwidth, output impedance, THD & IMD. Great sounding amp with small amount of NFB requires great design and quality components. Unfortunately it is cheaper to achieve the same using cheaper design and excessive amount of NFB hence creating overshoots (odd harmonics in frequency domain) and unpleasant bright sound.