A rule of thumb I’ve seen stated, which seems to me to make sense as a very rough approximation, is that music tends to require similar amounts of power at frequencies above and below 350 Hz. That should be considered in the context of the crossover point of the particular speaker, as bdp24 alluded to in his post. So if the crossover point of the speaker is considerably lower than that figure the high frequency amp will probably have to supply more power than the low frequency amp much of the time, and if the crossover point of the speaker is considerably higher than that figure the converse would be true.
Also, Erik makes a good point about the fact that if the two amps are properly gain matched, and a passive biamp configuration is being used (i.e., there is not an electronic crossover "ahead" of the amps), both amps will have to output voltages corresponding to the full frequency range of the signal. As a practical matter what that usually means is that in a passive biamp configuration there should not be a huge disparity between the power capabilities of the two amps. Otherwise the power capability of the low frequency amp that can be utilized, without driving the high frequency amp into clipping, may be limited by the voltage swing capability of the high frequency amp.
Regards,
-- Al
The upshot is that the mid/high frequency side will have an impedance to frequency curve that presents no load to the amplifier below the crossover point.That is an oversimplification, of course, as you probably realize. Below the crossover point the load impedance presented by the speaker to the high frequency amp will gradually increase as frequency decreases, at a rate roughly corresponding to the slope of the crossover network (e.g., 6 or 12 or 18 db/octave).
Also, Erik makes a good point about the fact that if the two amps are properly gain matched, and a passive biamp configuration is being used (i.e., there is not an electronic crossover "ahead" of the amps), both amps will have to output voltages corresponding to the full frequency range of the signal. As a practical matter what that usually means is that in a passive biamp configuration there should not be a huge disparity between the power capabilities of the two amps. Otherwise the power capability of the low frequency amp that can be utilized, without driving the high frequency amp into clipping, may be limited by the voltage swing capability of the high frequency amp.
Regards,
-- Al