Unsound, amplifier/speaker synergy can definitely be used to advantage. This is how it's done with a high output impedance amp: The speaker designer uses impedance peaks to get the amp to deliver more power where he wants it. We almost always see impedance peaks in the bass region, so by playing with the enclosures's tuning frequency the designer can use those impedance peaks to extend the bass deeper than it otherwise would have gone. However if the amp's output impedance is too high, the bass will boom no matter what the tuning - so there is an "optimum" for a given speaker.
The reason this type of amp doesn't give good results with all speakers involves more than just the bass region. The speaker's impedance curve usually has peaks and valleys above the bass region, and a high output impedance (or current-source approximating) amp will tend to deliver more power into the peaks and less power into the valleys. A low output impedance (voltage source approximating) amp does the opposite. If a speaker has a smooth impedance curve above the bass region it can work well with both types, provided the bass tuning is adjusted accordingly. With Ralph's S-30, most of my speakers will exhibit roughly one-third to one-half octave greater bass extension than with a solid state amp, but I have to change the tuning frequency. That extra bass is pretty much a "free lunch". In practice I would say Ralph's amps are closer to a "constant-power source" rather than a "constant-current source", but that's still different enough from "constant voltage" to present unique challenges and opportunites for the speaker designer.
Now a designer can also take advantage of the "free lunch" to be had from a solid state amp, by dropping the impedance in the region where he needs more output. In that case, I'd parallel a second woofer in the bass region to drop the nominal impedance to 4 ohms, increasing the amp's output in that region. That calls for a second woofer and a larger enclosure, so it's maybe not as much of a "free lunch" as the first case.
Duke
The reason this type of amp doesn't give good results with all speakers involves more than just the bass region. The speaker's impedance curve usually has peaks and valleys above the bass region, and a high output impedance (or current-source approximating) amp will tend to deliver more power into the peaks and less power into the valleys. A low output impedance (voltage source approximating) amp does the opposite. If a speaker has a smooth impedance curve above the bass region it can work well with both types, provided the bass tuning is adjusted accordingly. With Ralph's S-30, most of my speakers will exhibit roughly one-third to one-half octave greater bass extension than with a solid state amp, but I have to change the tuning frequency. That extra bass is pretty much a "free lunch". In practice I would say Ralph's amps are closer to a "constant-power source" rather than a "constant-current source", but that's still different enough from "constant voltage" to present unique challenges and opportunites for the speaker designer.
Now a designer can also take advantage of the "free lunch" to be had from a solid state amp, by dropping the impedance in the region where he needs more output. In that case, I'd parallel a second woofer in the bass region to drop the nominal impedance to 4 ohms, increasing the amp's output in that region. That calls for a second woofer and a larger enclosure, so it's maybe not as much of a "free lunch" as the first case.
Duke