Autoformers, The Benefits in matching amp to speaker



There has been a great deal of conversation about Autotransformers in this forum. Many think they are similar to the output transformers we use on Tube Amplifiers. They are not for some very important reasons. They are not wound the same way, they have no High Voltage insulation, they are wound with heavy low resistance wire and all the winding is used all the time. In addidtion part of the signal current is direct and part is transformed. 

  • THE WINDING.  When we make a traditional output transformer we have to insulate the primary from the secondary for over 1000 volts. This insulation takes up space and winding space is most dear to the designer as we want as much copper in there as possible. We then have to section the windings and interleave them. An interleave of 5 is good and some think 7 or 9 or even 11 is better but that raises the capacitance of the transformer and is hard on the tubes at high frequencies. An autotransformer has no DC voltage in the windings and thus can be bifilar wound (taking 2 or 3 or more wires at once). This increases the coupling and extends the high frequency response by a factor of 2 or more. My ouput transformers are good to 65 KHz and the Autofomer is good to 140 KHz. 

  • THE CORE: As to the core, an EI core is preferable over a torroid as the torroid will have saturation problems if connected to an amplifier that has a DC offset. An offest as low as 20 mV can swing the core in one direction toward saturation. An EI core has a very small air gap that will allow it to ignore rather large offesets. 

  • IN THE AMPLIFIER: Here's where the difference is between a conventional output transformer and a Autoformer occurrs. This is why Wiggins at Electro Voice created the CIrclotron circuit. In a conventional tube amplifier. for most of the signal, only one half of the output transformer is active. It is very difficult to make the two halves of a push pull transformer identical above 20 KHz where the feedback really cares about phase shift. Even the taps on an Ultralinear transformer can go out of phase at high frequencies. This causes the amplifier to ring on one half of the square wave. Though not widely talked about, we who design amplifiers are very familair with this problem. Wiggins realized that if he put the transformer in a bridge circuit that the primary would act as a whole and this problem would go away. That is the essence of the WIggins Circlotron. Because he wanted to keep the ampifier efficient he did use a high ratio transformer with conventional taps. BTW, we do not put taps on an amplifier to "match" the impedance of the speaker as we know it varies. We put them on there to deliver the proper ratio of voltage and current to make the amplifier happy. You can always use a lower tap and enjoy lower distortion, better damping, lower noise and extended tube life. You also extend the class A region. The only reason to use a higher or matched tap is to get the most power out of the amplifier if you play it loud. In the RM-4 manual I suggest this strongly and have termed it "Light Loading"

Now, what is an Autoformer going to do for you? If you have an OTL amplifier you should know that the power is greatly reduced into low impedance loads. Even worse is that low impedance loads will overheat the tubes at high power levels as most of the power supply voltage is being dropped across the tube not the load. So low impedance loads are hard on the tubes and cause higher distortortion All of these ills can be solved by the use of a proper Autoformer.
  
For OTL amplifiers that have high output impedance and produce their best performance into 16-32 ohms one needs a 6 or 8 to one step down ratio. This will make the speaker and amplifier very happy and still preserve the qualities of the OTL. A 4 to 1 is not enough. This is no problem to make and I have been using mine for many years.

An Autoformer can also be used in reverse if one has a low voltage, high current amplifier like an ML-2 which is 25 watts into 8 ohms but 100 into 2. Again a 4 to one will get you 100 watts and and an 8 to one even more. Remember the impedance ratio is the turns squared. So an even a 9 to 1 impedance is only 3 to 1 turns and 1/3 of the signal is direct through the primary.

I hope this clears up the differences in these two very different types of transformers and we can stop considering them as the same. While some may consider a transformer a band-aid, I consider it a device that makes the problem go away.

Please feel free to ask your questions.
128x128ramtubes
Ralph,

I agree your amplifier is fine for the Maggies as the impedance is constant however the lowness of it is hard on the tubes. I look at low impedances are like driving a short. I did put a one ohm tap in the RM-200 and it will indeed output 100 watts into a 1 ohm load with good damping. So why did you stop making the Autoformers?

I am curious in reading you white paper and posts here that while you admit that an ESL can have a 10 to 1 impedance range you feel that it is appropriate to run such a speaker with high impedance drive. I was working for Beveridge when we did the model 2 and 3 speaker and was involved in the specification of the transformer for both(I was not winding yet). While we came up with something that kinda worked for the system 3 we found that system  2 was impossible due to the bass extension down to 30 Hz while the system 3 only required 200 Hz.

The original Beveridge direct drive amplifier produced 1500 VA (similar to watts). We could not make a transformer or hardly find a high enough current ampifier at the time to produce 1500 VA. This was in 1978. I did find a Mitsubishi amp that produced 60 amps but getting all those VA through the transformer was another challenge. When I questioned Bev as to why one needs 1500 VA he said. "go play some trumpet music and measure the current". I measured 1500 VA! This is why I make 5,000 volt direct drive amplifiers for ESLs.

Damn, this is great! For those in the San Francisco Bay Area, Roger Modjeski (RAM Tubes, Music Reference) teaches a course in amplifier design at The Berkeley Hi Fi School. You can build your own amp in the class, any kind you want. My home town is San Jose, and if I still lived there I’d do it myself. If you Google the school name, a website will be at the top of the list, and it contains all kinds of great amplifier design information.

If you truly want to "Walk the walk", this is the way to do it, not sticking pieces of wood and rubber in a 70’s Japanese receiver. Beware of false Prophets!

While some may consider a transformer a band-aid, I consider it a device that makes the problem go away.


I totally agree with Roger’s summation for autoformers, they are an "answer looking for a problem."
A bit like having rubber roads and looking for concrete tires.

It’s better not to have the problem to start with yes?

And have the right amp/combo yes?
And if you have this correct amp/speaker combo and introduce an autoformer, the sound will take a hit for the worse.

Cheers George
Note to people who love the sound of both magnetic-planar loudspeakers and tube amps: the Eminent Technology LFT-8b is a much better candidate for use with tube amps (especially OTL’s) than are Magneplanars. I love and have owned three pair of Maggies (currently one---the legendary Tympani-IVa), but they present a 3-4 ohm load to the power amp, while the LFT-8b an 8 ohm. And, if you bi-amp the LFT-8b (easy to do---it has separate binding posts for the m-p drivers and the dynamic woofer), the Linear Field Transducer itself is a mostly-resistive 11 ohm load---ideal for tubes! The Atma-Sphere M60 is known to be a great amp for the ET LFT-8b, as is the Music Reference RM-200.
So why did you stop making the Autoformers?
Paul Speltz came out with the ZEROs. I think our device was better in some ways- it was EI core rather than toroid, and it had 1 ohm taps! But the ZERO proved easier to explain and since that wasn't our main business we just went with it.
I am curious in reading you white paper and posts here that while you admit that an ESL can have a 10 to 1 impedance range you feel that it is appropriate to run such a speaker with high impedance drive
Like you, I didn't think it would work. It totally did. The reason is as I mentioned- the impedance curve of an ESL is unlike that of a driver in a box, where impedance peaks represent a resonance. ESLs OTOH don't have that behavior. Their curve is based on a capacitor (despite a matching transformer usually in use). So they don't respond all that well to the voltage rules. As a result, an amplifier that makes constant power rather than constant voltage can do quite well on them.
 While some may consider a transformer a band-aid, I consider it a device that makes the problem go away.


I totally agree with Roger’s summation for autoformers, they are an "answer looking for a problem."

I've examined these two statements for a while and they seem to be at odds. George, I think you missed Roger's point.

Note to people who love the sound of both magnetic-planar loudspeakers and tube amps: the Eminent Technology LFT-8b is a much better candidate for use with tube amps (especially OTL’s) than are Magneplanars. I love and have owned three pair of Maggies (currently one---the legendary Tympani-IVa), but they present a 3-4 ohm load to the power amp, while the LFT-8b an 8 ohm. And, if you bi-amp the LFT-8b (easy to do---it has separate binding posts for the m-p drivers and the dynamic woofer), the Linear Field Transducer itself is a mostly-resistive 11 ohm load---ideal for tubes! The Atma-Sphere M60 is known to be a great amp for the ET LFT-8b, as is the Music Reference RM-200.
The Maggies were also not push-pull drivers until more recently. ET was often quite gracious in the old days and sold individual panels to hobbiests. I have a friend who built up a system using multiple panels so that the overall impedance was 16 ohms. The speaker was not only wide bandwidth and revealing, it was also quite easy to drive full range- 100 watts was plenty!