Jea48, you (and they) are talking about the crystalline structure of the conductor metal, and yes, it *can* sometimes have an asymmetrical geometry that lets electrons flow better in one direction than another (the basis of solid state devices by the way.) This is also the reason some cable manufacturers boast of "single crystal" wire which presumably has no impeding geometry.
However, I was referring to the issue of the signal itself having a direction, which it can't, because it's an alternating current, constantly reversing it's polarity.
Herman -- energy is only "transferred" when it does some work. Until then, it's only "potential energy" (as in 'voltage' potential.) It really doesn't matter whether the voltage potential is of constant polarity (direct current) or variable polarity (alternating current), there is no "work" being done in the transmission line itself (other than some heat generated if the conductors are too small for current to flow through them unimpeded.) In direct current, the electrons do indeed flow in one direction, and thus "the load" (where the "work" is done) becomes an impediment to the flow of electrons through the entire system -- and which is why DC can only be transmitted a short distance -- and which is why Edison lost to Westinghouse and AC ;--)) Nevertheless, none of these things affect (or are affected by) the way the metal crystals in the conductor material happen to line up (or not.) As with all things, there are exceptions, the most common being ultra-high frequencies. Normal high frequencies (like in audio) just take the easy way out, and travel on the surface of the conductor(s) if there's enough of it.
.
However, I was referring to the issue of the signal itself having a direction, which it can't, because it's an alternating current, constantly reversing it's polarity.
Herman -- energy is only "transferred" when it does some work. Until then, it's only "potential energy" (as in 'voltage' potential.) It really doesn't matter whether the voltage potential is of constant polarity (direct current) or variable polarity (alternating current), there is no "work" being done in the transmission line itself (other than some heat generated if the conductors are too small for current to flow through them unimpeded.) In direct current, the electrons do indeed flow in one direction, and thus "the load" (where the "work" is done) becomes an impediment to the flow of electrons through the entire system -- and which is why DC can only be transmitted a short distance -- and which is why Edison lost to Westinghouse and AC ;--)) Nevertheless, none of these things affect (or are affected by) the way the metal crystals in the conductor material happen to line up (or not.) As with all things, there are exceptions, the most common being ultra-high frequencies. Normal high frequencies (like in audio) just take the easy way out, and travel on the surface of the conductor(s) if there's enough of it.
.