Art Dudley was using "impedance ratio," in this case 933 to 1, as a round-about way of indicating the turns ratio (which is the square root of 933, since impedance is reflected between the two sides of the transformer in proportion to the square of the turns ratio).
Hence the primary and secondary coil impedances he refers to (3 ohms and 2800 ohms) differ by a factor of 933. But I'm not sure how either of those numbers are defined -- as dc resistance, or as impedance at some frequency with the other side of the transformer connected to some load, or what?
The reason for the 2.83 ohm vs. 3 ohm "coincidence" is that the 47K load impedance is an insignificant load in comparison to 2.8K, which in turn reflects back to the primary as 3 ohms, while 47K in parallel with 2.8K reflects back to the primary as 2.83 ohms.
However, it is incorrect to consider the 2.8K as being in parallel with the 47K. Within the range of its intended operating conditions (frequency and voltage), a transformer has (to a very close approximation) no impedance of its own. In Axel's example, the 18K that he assumed was in parallel with the 47K preamp impedance represented an external 18K resistor, not the transformer's secondary coil impedance.
Regards,
-- Al