Stan, thanks. Your comments about the overall impedance of series and parallel connected speakers are essentially correct, although as you realize this is a 5-channel amp, with the speakers undoubtedly connected to separate channels. The reference to RCAs was undoubtedly a reference to the connections from the preamp to the amp (which has both RCA and XLR inputs).
To be completely precise, three 8 ohm speakers in parallel would result in a combined impedance of 8/3 = 2.67 ohms. The general formula, that works for any number of paralleled speakers and regardless of whether or not they have identical impedances, is that the combined impedance equals the reciprocal of the sum of the reciprocals of each of the impedances. So paralleling an 8 ohm speaker with a 6 ohm speaker and a 4 ohm speaker, for example, would result in:
1/(1/8 + 1/6 + 1/4) = 1.85 ohms
Returning to the original question, I suspect that RW is correct, and there is no problem. Photos at the Parasound site show that the speaker connectors and the AC input connector are all located near the left end of the rear panel (as viewed from the front), while the input connectors are located near the right end of the rear panel. So my guess is that the output transistors and related circuitry, which generate large amounts of heat, are located adjacent to the heat sink on the left side, while low level input and other circuitry is located on the right side. Or perhaps the output stages for 3 channels are on the left, with just 2 being on the right. And very conceivably the power supply is located at the rear center, causing the rear heat sink to become hot.
Also, it is indicated that the amp operates Class A up to significantly higher than average power levels, before changing to Class AB. And keep in mind that it provides 5 channels of high powered amplification (250W into 8 ohms, 400W into 4 ohms, for each of the 5 channels). All of that means a lot of heat. Finally, the design includes over-temperature protection mechanisms, and in the event of an over-temperature condition no music will be heard and both the power switch and a dedicated high temp indicator light will glow red.
No problem, IMO.
Regards,
-- Al
To be completely precise, three 8 ohm speakers in parallel would result in a combined impedance of 8/3 = 2.67 ohms. The general formula, that works for any number of paralleled speakers and regardless of whether or not they have identical impedances, is that the combined impedance equals the reciprocal of the sum of the reciprocals of each of the impedances. So paralleling an 8 ohm speaker with a 6 ohm speaker and a 4 ohm speaker, for example, would result in:
1/(1/8 + 1/6 + 1/4) = 1.85 ohms
Returning to the original question, I suspect that RW is correct, and there is no problem. Photos at the Parasound site show that the speaker connectors and the AC input connector are all located near the left end of the rear panel (as viewed from the front), while the input connectors are located near the right end of the rear panel. So my guess is that the output transistors and related circuitry, which generate large amounts of heat, are located adjacent to the heat sink on the left side, while low level input and other circuitry is located on the right side. Or perhaps the output stages for 3 channels are on the left, with just 2 being on the right. And very conceivably the power supply is located at the rear center, causing the rear heat sink to become hot.
Also, it is indicated that the amp operates Class A up to significantly higher than average power levels, before changing to Class AB. And keep in mind that it provides 5 channels of high powered amplification (250W into 8 ohms, 400W into 4 ohms, for each of the 5 channels). All of that means a lot of heat. Finally, the design includes over-temperature protection mechanisms, and in the event of an over-temperature condition no music will be heard and both the power switch and a dedicated high temp indicator light will glow red.
No problem, IMO.
Regards,
-- Al