Dfel, what Jonathan said is of course correct. The cartridge does not see the capacitance on the secondary side of the SUT divided by 100 (the square of the turns ratio we are assuming). Since the SUT transforms impedance in proportion to the square of the turns ratio, the cartridge sees the **capacitive reactance** that is on the secondary side divided by 100.
Since as you indicated earlier Xc = 1/(2*pi*f*C), capacitive reactance is inversely proportional to capacitance, and so the cartridge sees the capacitance on the secondary side **multiplied** by 100.
This is all based on an assumption of ideal behavior by the SUT, of course. No transformer will behave in a completely ideal manner, due to many factors. So all of this is of course just an approximation, but it is a good approximation for practical purposes.
Regards,
-- Al
Since as you indicated earlier Xc = 1/(2*pi*f*C), capacitive reactance is inversely proportional to capacitance, and so the cartridge sees the capacitance on the secondary side **multiplied** by 100.
This is all based on an assumption of ideal behavior by the SUT, of course. No transformer will behave in a completely ideal manner, due to many factors. So all of this is of course just an approximation, but it is a good approximation for practical purposes.
Regards,
-- Al