Polarity mystery: Can you help me solve it?


THE BACKGROUND: My speakers are Focal 1007be. They have a Linkwitz-Riley crossover with a 36 dB per octave slope. Because of that, the two drivers are wired with opposite polarity: the woofers are positive, the tweeters are negative.

WHAT I DID: At the advice of a friend with the same speakers, I inverted the polarity of the drivers, by simply reversing the red and black speaker wire leads to the terminals of both speakers, so that the speakers are still in phase with each other, but now the woofers are negative polarity and the tweeters are positive polarity.

WHAT HAPPENED: To my surprise, the sound improved! Specifically, image focus improved. The improvement can't be attributed to the preservation of the absolute phase of the recording, since the improvement was the same for many different recordings (some of which, presumably, preserve absolute phase, while others do not). And the improvement can't be attributed to the speakers being wired incorrectly at the factory, since the friend who suggested that I try this experiment owns the same speakers and experienced the exact same result. So I don't know what to attribute the improvement to.

Can anyone help with this mystery?
bryoncunningham
Fascinating. But would this effect be constant across all recordings with different absolute polarities?
Yes, this has nothing to do with absolute phase . . . it's more of a component-layout issue.

Here's an example - if you were to take two identical raw crossover inductors, and wire them in series . . . the electrical result is theoretically double the value of a single one, that is, the values add. However, if you stack them one on top of each other like doughnuts, the two magnetic fields around them will interact, and the overall inductance will either increase or decrease, depending on which way they're stacked. Because stacked one way, the fields will be going with each other and combine, but if you flip one of them over the fields will be working against each other thus cancel each other out a little bit.

But of course instead of physically flipping one of them over, you could simply reverse it's leads and get the same result. Now in your case, my speculation is that the interaction is between the woofer and one or more of its associated low-pass series inductors. Here, reversing the relative phase between the crossover and the woofer could somewhat change some of the inductors' effective values, and this would happen even if the polarity was also inverted on the speaker input to preserve absolute phase.

One of the downsides of using a steep sixth-order crossover design is that the required tolerances for the component values is much more critical to acheive the desired crossover slope. And changing the crossover slope affects not simply the summed frequency response, but also the speaker's directivity charactericts through the transition band - and this is something I would very much associate with a perceived change in imaging.
Hi Kirk,

Thanks for your characteristically knowledgeable response.

However, I think you may have misread or misinterpreted some of the earlier posts. As I understand it, Bryon has done nothing internally within the speakers. All he has done is to interchange red and black at the external terminals of each speaker, and also the sub, thereby inverting absolute phase. The result was improved imaging, which mystifyingly seems to occur consistently on a very wide selection of recordings, presumably encompassing some recordings that are absolute phase correct, some recordings that are inverted, and some recordings that are a random mix of phasings for the different instruments and/or voices that are present.

Given that, I'm not sure that the theory you have offered is applicable.

Best regards,
-- Al
Kirkus - What do you think of Al's last post? Can the driver/crossover/cabinet interaction theory explain the improvement I experienced across all recordings, regardless of their absolute polarity?

Still confused...
Got any test equipment like a o scope;if so I would put channel one on the input of speaker and then input a ac sine wave signal and look at the other drivers vs the input signal to see if the signal at the driver itself tracks with the input or is inverted;also I would use different frequencies and amplitudes.