Shielding components from EMI/RFI... Help please


A recent experiment with a product designed to reduce EMI/RFI left me curious about other ways to reduce EMI/RFI in my system. In the past ten days, I've stepped onto a slippery slope, at the bottom of which is surely some kind of insanity...

I've been experimenting with copper plates in an effort to absorb, deflect, diffract, and block EMI/RFI. I've tried copper plates under components, on top of components, and inside components.

This is the point where you tell me I don't know what I'm doing and I'm likely to short circuit something and/or electrocute myself. Consider me duly warned. This is also the point where you tell me to get some balanced interconnects, or at least to get some shielded interconnects for Chrissake. Consider me duly informed. Moving on...

I'm hoping you can help me make the most of this experiment, and help me avoid killing a component or myself. My strategy so far has been to:

1. Place copper plates at locations that generate a lot of EMI/RFI, e.g., components with switching mode power supplies or high frequency clocks. The system has a total of 3 SMPS and 3 clocks.

2. Place copper plates at locations that are vulnerable to EMI/RFI, e.g., under the amp, near the transformer.

3. Place copper plates inside noisy components -- in particular, my Meridian G68 preamp/processor. I've begun to build 2 partial Faraday cages, one for the SMPS, and one for the analog output stage.

4. Ground the copper plates either to the component chassis (when plates are used inside a component) or to an independent ground point (when plates are used above/below a component).

Has anyone tried this sort of thing?

Bryon
bryoncunningham
Just build a faraday cage around your whole room;). Run all your cables through copper pipe. Your cell phone won't work anymore but who needs distractions?
Nice room. Warm and inviting.

I once wrapped the umbilical cords of my preamp with aluminum foil then teflon tape over that. It was cheap and did lower the noise floor. When I moved I decided to remove the foil and listen again. The sound improved quite a bit without it. The sound was more open and airy. Sure the noise floor was higher but not much.

So I suggest once you get used to the change remove it and revaluate its benefits. You may be surprised with the results.
That is good advice, Sarcher. I had a similar journey with analog interconnects. After trying a number of different shielded interconnects from well respected manufacturers, I settled on an unshielded pair. As you describe, the sound was more open and airy with the unshielded cables. I've also experimented with shielded and unshielded power cables, and found that I preferred them unshielded or minimally shielded.

I guess I'm learning that I have a different attitude about shielding analog signals and power cables vs. shielding digital signals and digital circuits. The digital interconnect I settled on is double shielded. Very happy with it. As I mentioned in the OP, I have 3 digital devices with high speed clocks and switching mode power supplies. I've built complete shields for 2 of the digital devices, and a partial shield for the other. I recently removed the shields to make some other changes and I discovered that I definitely prefer the sound with digital devices shielded rather than unshielded. It wasn't so much a matter of audible noise as it was a matter of high frequency grain and glare. I guess that I could sum up my (admittedly limited) experience by saying that...

Shielding analog cables and power cables tends to reduce openness and air :-( whereas shielding digital cables and digital circuits tends to reduce grain and glare :-)

I have no idea if that is generalizable.

bc
That is an interesting observation about digital interconnects. I have a Linn DS which uses an ethernet connection from a NAS in a different room. I wonder if your theory would apply in my situation? I'm not sure if ethernet cables benefit from more shielding? Guess I could search the net to see what pops up.