Now to the current. A trannie like a 1:31.6 has a DCR of about 1.5 ohms on primary, and as we calculated 47ohm inductance and with a 13ohm in || a 10.18 ohm impedance.
what is a 47 ohm inductance? Also the 10.18 ohm is only the resistive nature of the reflected load. In order to call it the impedance you need to add in the inductance and capacitance of the SUT. To give an impedance you also need to give a frequency (or better yet a plot of impedance vs. frequency) and if just a fixed value such as 10.18 ohms is given, I would expect the word "Nominal" to be added.
Now try do the maths and see how much more current will go through the primary than in a non SUT set-up.
this confuses me, the non-sut setup will not have a primary. The only way to increase current through the primary is to apply the desired load across the secondary, by loading the primary you DECREASE the current through the SUT primary.
On the secondary you have MORE than twenty times the Voltage! Now this can ONLY come from a higher current, right? (ohms law)
actually it comes with less current, the current follows the exact inverse of the voltage. The volts * amps (assuming the ideal transformer) must be equal on either side so if you have 20X the voltage you have 1/20th the current.
Veff= [10/(10.18+4)]*0.3*31.6= 6.7mV that the phone-pre will see.
As I said, more than twenty times 6.7/0.3= 22.3
that is the voltage increase and why we use SUT's I don't see where current ever comes into the picture since it is purely a function of the V and Z.
So it is the SUT's primary that enables the cart to deliver 20 time more current than if you are offering 0.3mV to your phono-pre.
I'm sorry this is incorrect. The transformer allows the delivery of 20X more voltage but that comes at the cost of 1/20th of the current.
The cartridge outputs current based on the load. Assuming a 10R load, the cartridge will output the same current whether or not a transformer is in place. If the 10 ohms is provided by terminating a 1:30 with a 9K resistance then all of the current output by the cartridge will travel through the transformer to the load. The other extreme of this is a situation where a 10 ohm resistor is placed on the primary side of the transformer and the secondary is left open. Then all of the current generated by the cartridge will traverse the 10 ohm resistor and virtually no current will traverse the transformer. This is of course makes lots of assumptions but will suffice for a simple first order model. As you add in the parasitics your model becomes more complex (and more accurate) but you still need to adhere to the concepts of the ideal.
dave