Hi Ralph,
As also described in his article....is the fact that a 'stretchy' rubber belt can iron out the 'pulses' of a poled motor whereas if a non-compliant tight thread were employed........we're back to transferring that cogging into the platter?
Belt drive turntables differ from one other in belt compliance and platter moment of inertia, so their oscillation wow patterns differ. That explains in part why belt drive turntables sound so different from one another in pace and rhythm, in steadiness of pitch, and in solidity of bass (bass notes last longer, so they require a longer sustain of turntable pitch accuracy to sound straight and massively impactive, rather than warbly, wobbly, and weak).That's a quote from Peter Moncrief's incisive article about turntable speed control.
Can the belt drive designer reduce or damp the unwanted oscillations between platter and belt? In principle yes, but in practice it's tricky to execute. In principle, what's required is simply the addition of some resistive damping. This would damp the reactive LC tank circuit of belt and platter so it would no longer oscillate.
A common form of resistive damping is friction. Thus, if a knowledgeable turntable designer wants better speed constancy, he might well consider intentionally adding some friction to his rotating platter. It's worth noting that some Swiss and German engineers are so justifiably proud of their ability to produce nearly frictionless bearings that they cannot bring themselves to make turntables with high friction. As a result, the Thorens turntables exhibit some of the most spectacularly low friction bearings on the planet, and will spin seemingly forever (with the belt removed); but, at the same time they also exhibit some of the worst audible wow, in part because there is, as a matter of engineering pride, almost no resistive damping for the oscillating reactive tank circuit.
What might be useful ways to introduce friction? The fit and/or finish between platter spindle and well could be made poor, instead of smooth and polished. But this would be causing friction via crude irregularities, like two meshing mountain ranges, rubbing each other. The crude irregularities of these two mountain ranges rubbing together would cause unwanted speed irregularities (snags and letting gos), as well as unwanted vibrational rumble (the earthquake rumble of each letting go after each snag). So that tactic is out.
One useable tactic is to introduce a viscous fluid in the bearing, which provides friction in a liquid hence smooth form. This can be especially effective if the spindle is made in a larger than normal diameter, so that the viscous fluid has a larger moment arm (more leverage) with which to work its resistive magic (as in the Linn Sondek). The use of viscous fluid for resistively damping platter rotation can also be enhanced by various helical screw kinds of arrangements, which force the fluid to do extra work in opposing the rotation of the platter (as in the turntables from Max Townshend). It's no accident that these two brands have the best reputation among belt drive turntables for pace and rhythm, solid bass, and master-tape-like clarity. It's because both these designs recognize that belt drive, far from being a simple Hail Mary solution, brings with it new problems that must be addressed, and that overcoming the problem of speed constancy requires at least the addition of a fourth element, resistive damping, to the three usual elements of a belt drive turntable.
As also described in his article....is the fact that a 'stretchy' rubber belt can iron out the 'pulses' of a poled motor whereas if a non-compliant tight thread were employed........we're back to transferring that cogging into the platter?