Dover,
Interesting impressions of spiked mats. I'll keep that in mind, although you repeat yourself. Once should be sufficient?
" their goal is to dump excess energy from the stylus/record interaction to ground as fast as possible."
Exactly how is that accomplished, by using a mat of dissimilar mechanical impedance of a record? That doesn't take vibrations to ground, a high percentage will reflect back to haunt the stylus.
This is from a 1987 interview of Pierre Lurne who worked for Goldmund and was responsible for the design of the Studietto table:
http://www.stereophile.com/interviews/pierre_lurne_audiomecas_turntable_designer/
"From the Minimum turntable in 1979, through the second turntable which I designed for Audioanalyse in 1981 and now to the Audiomeca J1, I used the same concept of mechanics. I'll begin with the platter. I agree with other designers that methacrylate is the best material for a mat, and the shape of the platter is the same as the Minimum, which is to say that it is a little concave: it slopes from the outer rim to the center at an angle of 0.30$d. I decided on this form from a statistical survey of a large collection of records. There are actually two sheets of methacrylate, either side of a solid, 8mm-thick piece of lead, giving a total mass of 8kg.
"This construction is something very special. If you know the velocities of vibration in methacrylic and in lead, you can calculate when the vibration is reflected back to the stylus. First, the vibration induced in the record from the stylus tracking the groove goes through the record into the methacrylate, then to the lead, and so on. Each time the vibration is transmitted from one material to another, there is reflection and transmission, and the time taken for each reflection to return to the stylus can be calculated. You need not have all these delayed signals reach the cartridge at the same time. You then get the same effect as with the acoustics of a room with square dimensions—one big resonance. This is no good, and in addition, when a large reflected vibration reaches the stylus, the tracking is instantaneously different. But if you take care of the spacing in time of these delayed reflections—do you understand the concept of the 'Gold Number?'—then neither the music nor the tracking is affected, not at the beginning of the record or at the end.
"We use lead because it almost behaves as a 'magic material.' It has high mass, it has good damping with low-Q resonances, and it has a very low speed of vibration. If vibrations enter the lead center of the platter, they leave considerably later, much lower in amplitude."
Regards,
Interesting impressions of spiked mats. I'll keep that in mind, although you repeat yourself. Once should be sufficient?
" their goal is to dump excess energy from the stylus/record interaction to ground as fast as possible."
Exactly how is that accomplished, by using a mat of dissimilar mechanical impedance of a record? That doesn't take vibrations to ground, a high percentage will reflect back to haunt the stylus.
This is from a 1987 interview of Pierre Lurne who worked for Goldmund and was responsible for the design of the Studietto table:
http://www.stereophile.com/interviews/pierre_lurne_audiomecas_turntable_designer/
"From the Minimum turntable in 1979, through the second turntable which I designed for Audioanalyse in 1981 and now to the Audiomeca J1, I used the same concept of mechanics. I'll begin with the platter. I agree with other designers that methacrylate is the best material for a mat, and the shape of the platter is the same as the Minimum, which is to say that it is a little concave: it slopes from the outer rim to the center at an angle of 0.30$d. I decided on this form from a statistical survey of a large collection of records. There are actually two sheets of methacrylate, either side of a solid, 8mm-thick piece of lead, giving a total mass of 8kg.
"This construction is something very special. If you know the velocities of vibration in methacrylic and in lead, you can calculate when the vibration is reflected back to the stylus. First, the vibration induced in the record from the stylus tracking the groove goes through the record into the methacrylate, then to the lead, and so on. Each time the vibration is transmitted from one material to another, there is reflection and transmission, and the time taken for each reflection to return to the stylus can be calculated. You need not have all these delayed signals reach the cartridge at the same time. You then get the same effect as with the acoustics of a room with square dimensions—one big resonance. This is no good, and in addition, when a large reflected vibration reaches the stylus, the tracking is instantaneously different. But if you take care of the spacing in time of these delayed reflections—do you understand the concept of the 'Gold Number?'—then neither the music nor the tracking is affected, not at the beginning of the record or at the end.
"We use lead because it almost behaves as a 'magic material.' It has high mass, it has good damping with low-Q resonances, and it has a very low speed of vibration. If vibrations enter the lead center of the platter, they leave considerably later, much lower in amplitude."
Regards,