Not to throw water (pun intended) on danyers' analogy but the water pressure at the hose nozzle is independent of the size of the hose (WHEN THERE IS NO FLOW), but will actually be LOWER at the end of a smaller hose because of the extra resistance to the water flow offered by the smaller hose.
The rservoir at a certain height is the Voltage and the amount of water flowing through the hose is the current and the size of the hose (pipe) can be considered the load. If the load is high, the current is actually lower.
In danyers' analogy, the reason that the water is 'thrown' further from the shorter hose is not because the pressure is higher, but because less water is being supplied at the nozzle at a higher speed thus the water can travel a further horizontal distance before falling to the ground. The trouble with using water analogies (which is commonly done for electricity) is that one must also understand the mechanics of fluid flow for the analogies to make sense. In this case the analogy is not very usefull, except to misinform.
Gs5556's reply is, by far the best analogy, because it is not an analogy but an explaination using an example.
Salut, Bob P.
The rservoir at a certain height is the Voltage and the amount of water flowing through the hose is the current and the size of the hose (pipe) can be considered the load. If the load is high, the current is actually lower.
In danyers' analogy, the reason that the water is 'thrown' further from the shorter hose is not because the pressure is higher, but because less water is being supplied at the nozzle at a higher speed thus the water can travel a further horizontal distance before falling to the ground. The trouble with using water analogies (which is commonly done for electricity) is that one must also understand the mechanics of fluid flow for the analogies to make sense. In this case the analogy is not very usefull, except to misinform.
Gs5556's reply is, by far the best analogy, because it is not an analogy but an explaination using an example.
Salut, Bob P.