Rwd,
What kind of speakers are you intending to drive?
"High Current" is a relative term. For a load with a given, fixed impedance, a higher powered amp will always deliver higher current INTO THAT LOAD. In other words, for a fixed 8 ohm load, a 200W amp will supply more current than a 100W amp. Therefor, based solely on current requirements, it could appear that using an amp with a higher rated power output would be the answer.
However, the rated power of an amp into an 8 ohm load is not really a good indication of the MAXIMUM current delivery capability of that amp. Most speakers do not have a constant impedance over the entire audio frequency range, and many have less than 8 ohms nominal impedance. As described in the post above, using ohm's law, into an 8 ohm load, a 100 watt amp would deliver 3.54 amps of current (assuming a 0 degree phase angle between the voltage and current waveforms, for you hardcore engineers :). If instead of an 8 ohm speaker, we were driving a 4 ohm speaker, then to deliver the same 100 watts, the amplifier would have to output 5.00 amps of current. If the impedance dropped to one ohm, to provide 100 watts of power to the load, the current delivered would have to be 10 amps, almost 3 times the current at the 8 ohm rated power output. The ability of an amp to deliver higher current into low impedance loads is influenced primarily by the design of the power supply, and the type and number of output devices. The ability to dissipate larger amounts of heat also becomes an issue as current delivery increases.
If you have difficult to drive speakers, such as Martin Logans, where the impedance drops as low as one ohm at 20kHz, it is important to have an amplifier that is designed to drive low impedance loads.
Therefor, it is probably more helpful for you to consider an amplifiers performance into low impedance loads, rather than zero in on the term "high current". As described above, it is possible to have an amplifier with a large power rating into 8 ohms that will have "high current" at 8 ohms, but may not be suitable for driving low impedance speakers. It is also possible to have an amp with a modest power rating into 8 ohms, and thus a modest current delivery at 8 ohms, that is capable of delivering much higher current, or even much higher power, into lower impedance loads.
In general terms, if you have speakers with an unusual characteristic impedance plot, you probably want to look for an amp with the ability to drive a 2 ohm load continuously. If a manufacturer won't put into writing that their design is capable of driving a 2 ohm load, then it probably isn't.
That said, if your speakers sound good to you with the amp that you are using today, and the amp does not appear to be running abnormally hot, don't mess with a good thing.
What kind of speakers are you intending to drive?
"High Current" is a relative term. For a load with a given, fixed impedance, a higher powered amp will always deliver higher current INTO THAT LOAD. In other words, for a fixed 8 ohm load, a 200W amp will supply more current than a 100W amp. Therefor, based solely on current requirements, it could appear that using an amp with a higher rated power output would be the answer.
However, the rated power of an amp into an 8 ohm load is not really a good indication of the MAXIMUM current delivery capability of that amp. Most speakers do not have a constant impedance over the entire audio frequency range, and many have less than 8 ohms nominal impedance. As described in the post above, using ohm's law, into an 8 ohm load, a 100 watt amp would deliver 3.54 amps of current (assuming a 0 degree phase angle between the voltage and current waveforms, for you hardcore engineers :). If instead of an 8 ohm speaker, we were driving a 4 ohm speaker, then to deliver the same 100 watts, the amplifier would have to output 5.00 amps of current. If the impedance dropped to one ohm, to provide 100 watts of power to the load, the current delivered would have to be 10 amps, almost 3 times the current at the 8 ohm rated power output. The ability of an amp to deliver higher current into low impedance loads is influenced primarily by the design of the power supply, and the type and number of output devices. The ability to dissipate larger amounts of heat also becomes an issue as current delivery increases.
If you have difficult to drive speakers, such as Martin Logans, where the impedance drops as low as one ohm at 20kHz, it is important to have an amplifier that is designed to drive low impedance loads.
Therefor, it is probably more helpful for you to consider an amplifiers performance into low impedance loads, rather than zero in on the term "high current". As described above, it is possible to have an amplifier with a large power rating into 8 ohms that will have "high current" at 8 ohms, but may not be suitable for driving low impedance speakers. It is also possible to have an amp with a modest power rating into 8 ohms, and thus a modest current delivery at 8 ohms, that is capable of delivering much higher current, or even much higher power, into lower impedance loads.
In general terms, if you have speakers with an unusual characteristic impedance plot, you probably want to look for an amp with the ability to drive a 2 ohm load continuously. If a manufacturer won't put into writing that their design is capable of driving a 2 ohm load, then it probably isn't.
That said, if your speakers sound good to you with the amp that you are using today, and the amp does not appear to be running abnormally hot, don't mess with a good thing.