Hi Bob,
Once again you raise excellent questions.
In the absence of a transformer, the cmrr of an active balanced input stage will generally be degraded significantly when driven by an unbalanced source. Good cmrr requires a close match between, among other things, the input impedances of the two legs. Since the output impedances of whatever is driving those two legs are in series with those input impedances, and since an unbalanced source has an output impedance of essentially zero on one of the legs but not the other, an impedance imbalance will result.
A transformer will not be subject to that effect, as I understand it. It will provide an output that (for signals whose characteristics fall within the limits of what it is designed to handle) is simply proportional to the instantaneous voltage difference between its two primary terminals, regardless of source impedance differences.
What may be important, however, if an input transformer is used in conjunction with an unbalanced source, is assuring that pickup of noise, rfi/emi, etc., is as common mode as possible (i.e., as equal as possible between the two legs). That means that even though the source is unbalanced, a coaxial or other non-symmetrical rca cable preferably should not be used. Preferably a shielded twisted pair or other cable that has symmetrical signal and return conductors should be used, terminated with rca connectors, with the shield grounded at the source end.
The degree to which the cable configuration may be important, though, would be dependent on whether the primary contributors to noise are ground loop effects, or rfi/emi pickup. Several of the Jensen writeups suggest that more often than not the former is the more significant problem in home audio systems that have unbalanced interfaces. To the extent that that is true in any given system, it seems to me that input transformers and output transformers, even if connected with non-symmetrical rca cables, may be comparably effective, since either one will break a ground loop. Although in the case of an output transformer, the high inter-winding capacitance I mentioned in my previous post may lessen its effectiveness with respect to ground loop-related noise that is at high frequencies, since that noise may to some extent simply couple through the capacitance.
Best regards,
-- Al
Once again you raise excellent questions.
In the absence of a transformer, the cmrr of an active balanced input stage will generally be degraded significantly when driven by an unbalanced source. Good cmrr requires a close match between, among other things, the input impedances of the two legs. Since the output impedances of whatever is driving those two legs are in series with those input impedances, and since an unbalanced source has an output impedance of essentially zero on one of the legs but not the other, an impedance imbalance will result.
A transformer will not be subject to that effect, as I understand it. It will provide an output that (for signals whose characteristics fall within the limits of what it is designed to handle) is simply proportional to the instantaneous voltage difference between its two primary terminals, regardless of source impedance differences.
What may be important, however, if an input transformer is used in conjunction with an unbalanced source, is assuring that pickup of noise, rfi/emi, etc., is as common mode as possible (i.e., as equal as possible between the two legs). That means that even though the source is unbalanced, a coaxial or other non-symmetrical rca cable preferably should not be used. Preferably a shielded twisted pair or other cable that has symmetrical signal and return conductors should be used, terminated with rca connectors, with the shield grounded at the source end.
The degree to which the cable configuration may be important, though, would be dependent on whether the primary contributors to noise are ground loop effects, or rfi/emi pickup. Several of the Jensen writeups suggest that more often than not the former is the more significant problem in home audio systems that have unbalanced interfaces. To the extent that that is true in any given system, it seems to me that input transformers and output transformers, even if connected with non-symmetrical rca cables, may be comparably effective, since either one will break a ground loop. Although in the case of an output transformer, the high inter-winding capacitance I mentioned in my previous post may lessen its effectiveness with respect to ground loop-related noise that is at high frequencies, since that noise may to some extent simply couple through the capacitance.
Best regards,
-- Al