@atmasphere Happy to try to explain, it’s a shame that there’s no way of posting a picture...
So if I start with a conventional amplifier block with an inverting and non-inverting input and a single output. A single ended amplifier input might be a 100Ω series resistor followed by an RF filter & DC blocking capacitor, in non-inverting mode the input impedance is set by the resistors to ground at the input so it’s not difficult to maintain a high input impedance alongside a low thermal noise from the series resistor. The actual impedance of the non-inverting input is so large that it can be pretty much ignored.
If you take the above example and feed the cold signal into the inverting input, the series resistor on the cold input will dictate the maximum input impedance as the current will be flowing into the virtual ground at the summing point. So 100Ω is now out of the question. You might for example choose to go with 10kΩ series resistors on both inputs, that’s 20dB more thermal noise than 100Ω.
When I look at your amplifier I see that you have two outputs and I suspect that is the source of confusion... at what point does the cold signal get inverted?.. or does it connect to the negative speaker terminal?
Edit: I just did a quick google search to find a picture... I know nothing about the site and I've not read the content but the schematic in the header is what I'm talking about. The cold input current flows into the summing point (where the Va label is), so R1 sets the cold input impedance... in fact the impedance will be lower than R1s value but that's beside the point. If we change this to single ended with a gain of 1/1, R1 becomes open circuit and R3 is a dead short. The input impedance is R2 + R4, which means R2 can be low and R4 can be higher and the thermal noise is calculated from the voltage divider.
So if I start with a conventional amplifier block with an inverting and non-inverting input and a single output. A single ended amplifier input might be a 100Ω series resistor followed by an RF filter & DC blocking capacitor, in non-inverting mode the input impedance is set by the resistors to ground at the input so it’s not difficult to maintain a high input impedance alongside a low thermal noise from the series resistor. The actual impedance of the non-inverting input is so large that it can be pretty much ignored.
If you take the above example and feed the cold signal into the inverting input, the series resistor on the cold input will dictate the maximum input impedance as the current will be flowing into the virtual ground at the summing point. So 100Ω is now out of the question. You might for example choose to go with 10kΩ series resistors on both inputs, that’s 20dB more thermal noise than 100Ω.
When I look at your amplifier I see that you have two outputs and I suspect that is the source of confusion... at what point does the cold signal get inverted?.. or does it connect to the negative speaker terminal?
Edit: I just did a quick google search to find a picture... I know nothing about the site and I've not read the content but the schematic in the header is what I'm talking about. The cold input current flows into the summing point (where the Va label is), so R1 sets the cold input impedance... in fact the impedance will be lower than R1s value but that's beside the point. If we change this to single ended with a gain of 1/1, R1 becomes open circuit and R3 is a dead short. The input impedance is R2 + R4, which means R2 can be low and R4 can be higher and the thermal noise is calculated from the voltage divider.