So if I start with a conventional amplifier block with an inverting and non-inverting input and a single output. A single ended amplifier input might be a 100Ω series resistor followed by an RF filter & DC blocking capacitor, in non-inverting mode the input impedance is set by the resistors to ground at the input so it’s not difficult to maintain a high input impedance alongside a low thermal noise from the series resistor. The actual impedance of the non-inverting input is so large that it can be pretty much ignored.@pragmasi
If you take the above example and feed the cold signal into the inverting input, the series resistor on the cold input will dictate the maximum input impedance as the current will be flowing into the virtual ground at the summing point. So 100Ω is now out of the question. You might for example choose to go with 10kΩ series resistors on both inputs, that’s 20dB more thermal noise than 100Ω.
There's no such thing as 'cold signal'. There's non-inverting and inverting. What you're describing (as seen in your link) has to do with an opamp which has differential inputs but a single-ended output. A differential amplifier always has dual outputs. Look again at the diagram I linked:
http://www.atma-sphere.com/en/resources-understanding-our-circuits.html
When I look at your amplifier I see that you have two outputs and I suspect that is the source of confusion... at what point does the cold signal get inverted?.. or does it connect to the negative speaker terminal?Really, I think this 'cold signal' thing is confusing you. Both inverted and non-inverted signals are 'hot'. They must both be treated the same way. If you are referring to the inverted signal (for example the minus output of a phono cartridge) it gets inverted at the output of the device to which it was applied as an input.