@ Ralph: You ask "Also, if the platter is at rest there will be no skating force at all. That was the basis for my response above; are you saying there is zero(0) change regardless of rotational speed?"
Answer: The difference in the rest condition and the dynamic condition are not relative to each other. Skating force is the result of dynamic friction, which requires movement. So the rest condition is irrelevant. One cannot extrapolate changes due to increases in relative velocity based on the change from no velocity to some velocity. The comparison between the no velocity condition and some specific positive velocity condition is a non-sequitur. That would be the case even if dynamic friction magnitude were dependent upon velocity. Fact is dynamic friction is nearly independent upon velocity.
Answer: The difference in the rest condition and the dynamic condition are not relative to each other. Skating force is the result of dynamic friction, which requires movement. So the rest condition is irrelevant. One cannot extrapolate changes due to increases in relative velocity based on the change from no velocity to some velocity. The comparison between the no velocity condition and some specific positive velocity condition is a non-sequitur. That would be the case even if dynamic friction magnitude were dependent upon velocity. Fact is dynamic friction is nearly independent upon velocity.