Error checking and correction is very loose in CDPs since it has to read CD in real time (dust, scratches). There are programs like MAX for Mac that read music CD as data going multiple time to the same sector until finds right checksum. My CDP plays and Itunes rips CDs that MAX refuses to read or reads extremely long time.
Digital data from CDP is jittery (contains jitter - noise in time domain). Jitter creates sidebands at very low level (in order of <-60dB) but audible since not harmonically related to root frequency. With music (many frequencies) it means noise. This noise is difficult to detect because it is present only when signal is present thus manifest itself as a lack of clarity. Jitter can be suppressed by asynchronous upsampling DACs (like Benchmark DAC1) or reclocking devices. Jitter depends on quality of CDP transport and power supply. Typical digital transition of CDP is in order of 25ns making it susceptible to noise (slow crossing of threshold). High quality transports can transition many times faster reducing noise coupling but creating a lot of problems with reflections on cable characteristic impedance boundaries (therefore require better digital cable).
Jitter in D/A playback can be suppressed but recorded jitter in A/D process stays forever. For some early A/D conversions the only option is to convert it again if analog tapes still exist.
Digital data from CDP is jittery (contains jitter - noise in time domain). Jitter creates sidebands at very low level (in order of <-60dB) but audible since not harmonically related to root frequency. With music (many frequencies) it means noise. This noise is difficult to detect because it is present only when signal is present thus manifest itself as a lack of clarity. Jitter can be suppressed by asynchronous upsampling DACs (like Benchmark DAC1) or reclocking devices. Jitter depends on quality of CDP transport and power supply. Typical digital transition of CDP is in order of 25ns making it susceptible to noise (slow crossing of threshold). High quality transports can transition many times faster reducing noise coupling but creating a lot of problems with reflections on cable characteristic impedance boundaries (therefore require better digital cable).
Jitter in D/A playback can be suppressed but recorded jitter in A/D process stays forever. For some early A/D conversions the only option is to convert it again if analog tapes still exist.