Following Audioengr's comments, especially since i know what he's getting at, i would suggest a cable of very low inductance against a "typical" zip style power cord of adequate gauge. Using the "crummy" stock cord as a reference should work fine since the manufacturer thought that it would more than suffice at the time of design / sale. The engineers there obviously took into account such things as current draw and thought that it should be "plenty good enough". At least, according to theory.
If the "fancy" cord was of a high capacitance nature, all the better ( in my book ). The directions on how to make a very basic cord that offers good performance and is suitable for this specific installation is what follows. It should by no means considered my idea of "the ultimate" power cord or a power cord with universal application. It is however, a good starting point for someone that wants a good cord for pennies on the dollar : )
If using this for an amp, look for a cable that uses four 16 gauge ( at least ) or preferably four 14 gauge individually insulated conductors. These should be arranged with two conductors stacked on top of the other two. Since your amp does not use a "ground" per se, this should be easy for you to work with since you don't need to add an extra wire for an external ground.
The internal wiring should use staggered polarities as we go around in a circle i.e. hot, neutral, hot, neutral. Not only should the polarities be staggered to reduce inductance, lower EM radiation, reduce the susceptability of RFI, etc.., all four conductors should have a spiral twist to them. This rotates the wires within the main jacket so as to never have them running in a straight line. Hence, we end up with what is called a "spiral wrapped star quad" arrangement.
While looking for a cord of this nature, i would see if i could find one that used as little dielectric insulation material between conductors as possible. Obvously, you have to take into consideration safety factors in terms of rated voltage and current and remembering that the cord itself will be bending / flexing, but finding a suitable candidate should not be tough. Once you've found such a design, terminate it with good quality connectors and have at it.
As to my comments about the Kenwood L-O7M's, the "review" that i have on their bigger brother ( L-09M ) was not very complimentary at all. Then again, these amps probably "measure" quite well as far as "standard test procedures" go. Given the similarities between the two models of similar design and vintage and the more reliable than TAS or Stereophile ( at least as far as i'm concerned ) comments that i read, that is what i based my comments on. None the less, am amp is an amp and the results will speak for themselves.
One other thing though. You will need to be able to feed the amps a mono signal. Then again, i'm sure that you knew that : ) Sean
>
PS... we all know that it is the sound that counts. By properly conducting tests and applying the knowledge derived from those tests, we can work towards making more consistent and reliable products that DO sound better. In the past, coming up with the right tests has been the problem, but we are slowly learning more and more as we do more testing. As such, scientific testing CAN be a means to an end if applied in that manner OR it can help to explain how we arrived at the end when broken down and reverse engineered.
If the "fancy" cord was of a high capacitance nature, all the better ( in my book ). The directions on how to make a very basic cord that offers good performance and is suitable for this specific installation is what follows. It should by no means considered my idea of "the ultimate" power cord or a power cord with universal application. It is however, a good starting point for someone that wants a good cord for pennies on the dollar : )
If using this for an amp, look for a cable that uses four 16 gauge ( at least ) or preferably four 14 gauge individually insulated conductors. These should be arranged with two conductors stacked on top of the other two. Since your amp does not use a "ground" per se, this should be easy for you to work with since you don't need to add an extra wire for an external ground.
The internal wiring should use staggered polarities as we go around in a circle i.e. hot, neutral, hot, neutral. Not only should the polarities be staggered to reduce inductance, lower EM radiation, reduce the susceptability of RFI, etc.., all four conductors should have a spiral twist to them. This rotates the wires within the main jacket so as to never have them running in a straight line. Hence, we end up with what is called a "spiral wrapped star quad" arrangement.
While looking for a cord of this nature, i would see if i could find one that used as little dielectric insulation material between conductors as possible. Obvously, you have to take into consideration safety factors in terms of rated voltage and current and remembering that the cord itself will be bending / flexing, but finding a suitable candidate should not be tough. Once you've found such a design, terminate it with good quality connectors and have at it.
As to my comments about the Kenwood L-O7M's, the "review" that i have on their bigger brother ( L-09M ) was not very complimentary at all. Then again, these amps probably "measure" quite well as far as "standard test procedures" go. Given the similarities between the two models of similar design and vintage and the more reliable than TAS or Stereophile ( at least as far as i'm concerned ) comments that i read, that is what i based my comments on. None the less, am amp is an amp and the results will speak for themselves.
One other thing though. You will need to be able to feed the amps a mono signal. Then again, i'm sure that you knew that : ) Sean
>
PS... we all know that it is the sound that counts. By properly conducting tests and applying the knowledge derived from those tests, we can work towards making more consistent and reliable products that DO sound better. In the past, coming up with the right tests has been the problem, but we are slowly learning more and more as we do more testing. As such, scientific testing CAN be a means to an end if applied in that manner OR it can help to explain how we arrived at the end when broken down and reverse engineered.