Lew, thanks for the kind comments. Herman is more knowledgeable than I am concerning the type of balanced architecture he referred to, and I will defer to his comments. Perhaps my reference to fully balanced architecture should simply have said that it maintains a balanced pair of signals throughout its internal signal path.
On a separate note, one thing I neglected to emphasize in my post is that besides providing rejection of noise (in the sense of high frequency hiss and buzz), a balanced interface is much less susceptible to low frequency hum problems. Shadorne alluded to that, and the paper he linked to explains why.
Basically, since the chassis of single-ended equipment is connected to ac safety ground, to signal ground, and to the shields of single-ended interconnects connected between components, any offset in ac safety ground potential between the two components will cause an extraneous 60Hz current to flow through the shield, in common with signal return current. As Shadorne points out, the magnitude of the resulting hum will be dependent on the resistance of the path through the shield, and therefore on the particular interconnect.
If the interface between the two components is balanced, that becomes a non-problem, since the conductors for signal current and signal return current are separate from the shield of the cable. That is true whether or not the components are "fully balanced."
Regards,
-- Al
On a separate note, one thing I neglected to emphasize in my post is that besides providing rejection of noise (in the sense of high frequency hiss and buzz), a balanced interface is much less susceptible to low frequency hum problems. Shadorne alluded to that, and the paper he linked to explains why.
Basically, since the chassis of single-ended equipment is connected to ac safety ground, to signal ground, and to the shields of single-ended interconnects connected between components, any offset in ac safety ground potential between the two components will cause an extraneous 60Hz current to flow through the shield, in common with signal return current. As Shadorne points out, the magnitude of the resulting hum will be dependent on the resistance of the path through the shield, and therefore on the particular interconnect.
If the interface between the two components is balanced, that becomes a non-problem, since the conductors for signal current and signal return current are separate from the shield of the cable. That is true whether or not the components are "fully balanced."
Regards,
-- Al