Sean, so it effectively has infinite damping factor? Cool -- I'd love to see a copy of that review -- is there any way you could scan it and e-mail it? I had a sneaking suspicion that my blanket statement would bring forth the odd example or two of amps that were designed to meet a certain spec -- such as "doubling."
There's always someone who notices that the market has latched onto some spec (like TIM, or slewing-induced distortion, or bandwidth, or some spec du jour) and, without regard for anything else, designs a product specifically to perform really well in that one area. Makes for great ad copy and a good "story" at the retail level. But usually (to avoid another blanket statement) that kind of single-pointed approach rarely results in a great-sounding product.
Lots of feedback won't prevent your voltage supplies from sagging when heavily loaded. I mentioned regulating the output device rails, a method that actually limits the amplifier's output into higher impedances -- it doesn't increase power into low impedances. There's one other trick I know of: let the amplifier voltage clip in a stage prior to the output stage. If you don't want the amp's power to rise above spec when lightly-loaded, but not run out of gas when driving a low impedance, you make sure the output stage has more volts than it needs, but limit the maxiumum voltage swing somewhere prior to the output stage. Like run the entire front end of the amp at lower voltage than the output stage. That also works.
But a true voltage source? I'm suspicious. Since power supplies are not lossless, somewhere in the amp voltages are sagging -- we're just not letting the output stage see it. Any word in the review about how they did it? A circuit description?
There's always someone who notices that the market has latched onto some spec (like TIM, or slewing-induced distortion, or bandwidth, or some spec du jour) and, without regard for anything else, designs a product specifically to perform really well in that one area. Makes for great ad copy and a good "story" at the retail level. But usually (to avoid another blanket statement) that kind of single-pointed approach rarely results in a great-sounding product.
Lots of feedback won't prevent your voltage supplies from sagging when heavily loaded. I mentioned regulating the output device rails, a method that actually limits the amplifier's output into higher impedances -- it doesn't increase power into low impedances. There's one other trick I know of: let the amplifier voltage clip in a stage prior to the output stage. If you don't want the amp's power to rise above spec when lightly-loaded, but not run out of gas when driving a low impedance, you make sure the output stage has more volts than it needs, but limit the maxiumum voltage swing somewhere prior to the output stage. Like run the entire front end of the amp at lower voltage than the output stage. That also works.
But a true voltage source? I'm suspicious. Since power supplies are not lossless, somewhere in the amp voltages are sagging -- we're just not letting the output stage see it. Any word in the review about how they did it? A circuit description?