Sean...You really ought to be more specific than the frightening "FAR greater" when describing the damage potential of DC vs AC. Actually, as I think you must know perfectly well, the rms voltage of a sinusoidal waveform (its heating power) is 7/10 that of its peak voltage, which is presumably what you are assuming for DC from a faulty amp. Furthermore, if the amp goes into oscillation, which is the most likely failure mode, the output will be a square wave, (instead of a sine wave) which has exactly the same power as DC. Both levels could cause damage, and the difference in time required for damage to occur would NOT be great. I think that, because there is no loud audible indication of a problem with DC, amplifiers that are DC coupled are more likely to include protective circuitry. (Mine do).
Oh, and by the way, DC transmits over long distances very efficiently. Better than AC. A lot of research work was done on that technology here in Pittsfield Mass by the General Electric Transformer business. (Alas, GE quit the large power Transformer business). The problem with DC is that there is no easy way to step voltage up and down. With either AC or DC long distance transmission calls for voltage of several hundred thousand volts. You can't have that going into your house!
Oh, and by the way, DC transmits over long distances very efficiently. Better than AC. A lot of research work was done on that technology here in Pittsfield Mass by the General Electric Transformer business. (Alas, GE quit the large power Transformer business). The problem with DC is that there is no easy way to step voltage up and down. With either AC or DC long distance transmission calls for voltage of several hundred thousand volts. You can't have that going into your house!