List of Audio Tube Measured Noise Performance


I have begun to post and maintain a list of the measured noise performance of the types of vacuum tubes typically used in phono stages and other low-noise audio equipment. It might be of interest to any audiophile replacing or upgrading tubes in a phono stage.

So far the list is modest, with samples of twelve different brands and/or types, and a total of 58 tubes measured, but it is updated regularly. It includes tubes such as the 12AX7, 12AT7, 5751, 6922 / 6DJ8 / E88CC, and 6SL7GT. And it includes a sampling of tubes from all three major current production tube factories, as well as some new, old-stock (NOS) tubes.

I don’t sell tubes (or own stock in any tube factories), and the list is strictly measurement-based, so I believe it is completely objective. And I explain in detail how the measurements are made, for anyone who would like to repeat them.

You can see the list at:

http://tavishdesign.com/pages/downloads

I’d be interested in hearing about other tubes or brands you think should be included.

Scott
tavishdad
Hi Lewm,
Thanks, you have raised some important issues. It is not true that high gain tubes are necessarily noisier than low gain tubes. Tubes, like transistors, are characterized by their input-referred voltage noise (EIN) and input-referred current noise (IIN). The test circuits that I have used have a low input impedance, similar to the impedance of a moving magnet phonograph cartridge, and in such circuits only EIN is important. The high gain 12AX7 has a lower EIN than the low gain 12AU7 and therefore will have a higher signal-to-noise ratio, as an example. Since a lower gain tube amplifies both the signal and the noise less, sometimes people perceive the lower gain tube to have less noise, sort of like turning down the volume control. But the tube with lower EIN will actually produce a better signal-to-noise ratio, regardless of its gain.

The circuit does influence EIN to some extent, but in my test circuits, as in most low noise circuits, the circuit is designed such that the tube EIN dominates the noise performance. The test circuits I’ve used are designed to provide the optimum bias current for lowest tube EIN, and are also designed to be representative of the way the tubes are used in low-noise circuits. Therefore, my measurement results should reflect the way signal-to-noise ratios in audio equipment will be affected by the tubes under test.

Please note that these measurements only characterize the intrinsic noise performance of the tubes (hiss), not their susceptibility to “hum” when AC is used on the tube heaters. In most high-performance audio equipment, tube heaters use filtered (and sometimes regulated DC), so their susceptibility to hum when AC is used on the heaters is not a concern. But since many musical instrument amplifiers do still use AC on tube heaters, I do plan to characterize this “hum susceptibility” in the future – it will be a separate measurement and a separate table in my listings.
I hope this is helpful.
Best regards,
Scott
Hi Everyone,

I updated the measurement list on my website.

1. I included a few more samples of Shuguang 12AX7B and Shuguang 12AT7.

2. I included new measurements made on the JJ EF86 (they call it EF806S). I've read in many places that pentodes are noisier than triodes, but I've never measured it before and was very curious to see how much. The EF86 measurements make it one of the higher noise tubes I measured, but not the highest. I also measured it as a triode, because I've read that a triode-connected pentode should produce less noise. At least in this case, it did not seem to be true. Within the accuracy of my measurements, it was the same. Hmmm......

3. Finally, I have begun to compute sample standard deviation (sigma) instead of posting the min & max for each type. Standard deviation is a better way to compare data sets of different sizes.

Scott
Since my last post here, I’ve updated the list on my website to include more tube types (such as the European D3a), and many more samples of the original tubes. The list at this point includes 95 samples and 15 different brands and types, along with some comments on the measurements and on specific tubes. And it includes the average noise, standard deviation, and number of samples of each type, so statistical significance of the measurements can be computed (if you are so inclined).

You can see the list on my “downloads” page at:

http://tavishdesign.com/pages/downloads

I’d be interested in hearing about other tubes or brands you think should be included.
Scott
Tavishdad, Thanks for pointing out the logical inconsistency in my generalization to the effect that "High gain tubes will tend to have more noise than those that afford less gain". After posting, I kind of wished I hadn't said that, for reasons you state; it's a matter of semantics, and I got the semantics wrong. But how about the other variable factors that to my mind also determine noise, at the practical level, which is to say when listening to music?

Thanks for posting your results, and keep at it, please. Have you tested ECC99?
Is the tube noise data significantly effected by the equipment used to measure it? Will your results pretty well match those of Roger Modjeski (RAM Tube Works) and Kevin Deal (Upscale Audio) if the same tube was to be tested by all three of you? Or is it more a matter of the relative noise levels of a group of tubes obtained by each tester?