Yes, an amp does have peak power normally quite a bit in excess of its nominal continuous rating. The class in which the amp works, the size of its power supply and whether it is stiffly regulated or not are all factors in by how much an amp will exceed its average rated power on peaks. Interestingly enough, in the days when objective measurements were not met with some kind of exorcism rite there was a spec often provided as to the dynamic headroom of the amp given in dBs. High Fidelity magazine also touted rating power amps in dB watts so that the single number given would correlate better with the ability of the amp to actually produce an increase in SPLs. The single most significant number that would address your concerns though is the dynamic headroom figure. Dynamic headroom probably accounts in great measure for this subjective audio notion that, based on listening to different power amps (ostensibly in the same system and the same room, but subjective audiophiles are not prone to quibbling over mere details such as limiting the number of variables), you get your "bigger watts" and you get your "smaller watts", then you can also get your "tube watts" and your solid state watts". All this constitutes, in all likelihood, more bogus observations from the subjective front. It can all be explained "scientifically" and far better than by a duffer like me. Good day.
How do amplifiers work?
I am looking to gain a better understanding of how amplifiers draw power(wattage), and then send the appropriate amount to the speakers.
I have received different opinions regarding this from several techs. Without getting too techinical, as I am not a technician, can anyone shed some light as to how this all works?
Example: Lets say you have a 300wpc amp, with power hungry speakers(say 87db). You are playing music at a moderately high volume (11:00 on your dial, or -20db). Since the music is filled with peaks and valleys, hi's and lows, how many watts could the amp be drawing during any given post, or peak in the music? Does the draw actually exceed the rms 300 watts instantaniously during a peak. Is this what dynamic headroom is for. Is this where distortion or clipping comes in?
When the wattage or signal is then sent to your speakers, is this the maximum amount of wattage availble at any given time, given the volume setting, with the speakers reacting accordingly? Can an amp sense the power required for any given speaker?
Why do some audiophiles say that 100 clean watts is plenty, where others will say 300 to 400watts is needed to drive the same speaker. Is this because the clean 100watts has plenty of head room? Isn't a speaker capable of reaching its best dynamic heights, with an amp that has wattage to spare?
Thanks, Just Curious
I have received different opinions regarding this from several techs. Without getting too techinical, as I am not a technician, can anyone shed some light as to how this all works?
Example: Lets say you have a 300wpc amp, with power hungry speakers(say 87db). You are playing music at a moderately high volume (11:00 on your dial, or -20db). Since the music is filled with peaks and valleys, hi's and lows, how many watts could the amp be drawing during any given post, or peak in the music? Does the draw actually exceed the rms 300 watts instantaniously during a peak. Is this what dynamic headroom is for. Is this where distortion or clipping comes in?
When the wattage or signal is then sent to your speakers, is this the maximum amount of wattage availble at any given time, given the volume setting, with the speakers reacting accordingly? Can an amp sense the power required for any given speaker?
Why do some audiophiles say that 100 clean watts is plenty, where others will say 300 to 400watts is needed to drive the same speaker. Is this because the clean 100watts has plenty of head room? Isn't a speaker capable of reaching its best dynamic heights, with an amp that has wattage to spare?
Thanks, Just Curious
- ...
- 8 posts total
- 8 posts total