I agree with virtually every point Ralph raises, but as everything in life, it goes both ways . . .
Advantages of OTLs:
1. No output transformer. Really, this is THE advantage and rasion d'etre of OTL amps, hence their name (refers to something they don't have). Whether the performance attributes of audio transformers offset their disadvantages is of course a multi-decade debate.
2. Gain efficiency - actually, really something I hadn't thought of until Ralph mentioned it.
3. Higher potential slew performance.
Disadvantages of OTLs:
1. The transconductance characteristics of vacuum tubes operated in an OTL push-pull fashion is both inherently non-conjugate and non-complimentary - essentially similar to a the "all-NPN" solid-state amplifier designs of the early-1970s. Class-A biasing helps tremendously, but this will always be a fundamental source of large-signal even-order non-linearity, even at higher harmonics. A tranformer-coupled push-pull topology is still non-cojugate, but is inherently complimentary, and provides reliable cancellation of even-order distortion.
2. The plate resistance of virtually all vacuum tubes is WAY too high for effecient power transfer to a typical loudspeaker load. Paralleling a bunch of output tubes is the usual solution, and power-efficiency of OTLs is still very poor, even worse with all of those filaments to run. Now when direct-coupling to electrostatics, it's a whole different story . . .
3. OTLs may be gain-efficient, but they're definately NOT voltage-efficient, and require split high-voltage power supplys (or capacitive coupling, but then what's the point?). The primary inductance of a transformer, in contrast, makes for a VERY efficient use of power-supply voltage, as the maximum AC voltage peaks can be much higher than the B+.
4. Vacuum-tubes have comparatively poor DC-offset performance, and while solveable, this can present significant engineering hurdles. Conventional transformer-coupled topologies (should be) inherently DC stable.
5. The poor power-transfer-efficiency eats up virtually any possible advantage in slew performance, and stability issues for application of global NFB are identical for both types.
In the end, it's obvious that transformers are inherently imperfect . . . but also obvious that a perfect transformer could solve SO many engineering problems. Virtually every aspect of building an acceptable OTL amplifer involves huge sacrifices in efficiency . . . and (but?) efficiency isn't that great with ANY tube amplifier to begin with . . .
Any way you slice it, there are some significant obstacles to making the perfect amplifier.