Even the biggest, costliest amplifiers exhibit this power loss at the frequency extremes, but in these, the losses don't usually start until well beyond the audible range.
Let's assume now that we have access to an amplifier's power response curve, and can see that it will deliver its full rated power to 20Hz. Is this any guarantee that it will sound the same, at low levels, as a high-powered unit? It is not.
Power response curves show the power levels at which different frequencies will generate the same 2% distortion at which the midband power is usually rated (fig.3). What they fail to show is distortion at less-than- maximum power levels. An amplifier that yields 2% distortion at full rated output may yield 0.2% at half power, or its distortion may never drop below 1% regardless of how little power we drive from it. And since we do most of our listening at power levels far below overload, the amplifier's minimum distortion, or "residual" distortion, is of considerable interest to us. Here, again, is where the typical low-powered job falls far short of its heftier ilk.
Let's assume now that we have access to an amplifier's power response curve, and can see that it will deliver its full rated power to 20Hz. Is this any guarantee that it will sound the same, at low levels, as a high-powered unit? It is not.
Power response curves show the power levels at which different frequencies will generate the same 2% distortion at which the midband power is usually rated (fig.3). What they fail to show is distortion at less-than- maximum power levels. An amplifier that yields 2% distortion at full rated output may yield 0.2% at half power, or its distortion may never drop below 1% regardless of how little power we drive from it. And since we do most of our listening at power levels far below overload, the amplifier's minimum distortion, or "residual" distortion, is of considerable interest to us. Here, again, is where the typical low-powered job falls far short of its heftier ilk.