Gentlemen, I believe that at this point we are all on the same page regarding what occurs when an electrical signal propagates. To the extent that there is disagreement I believe it just revolves around terminology, and its interpretation.
Regarding "how could Drift Velocity be the average electron velocity?" I think that if the word "average" is changed to the word "net" we could all agree. At least I hope so. The word "net" in this context implying that random electron movements at Fermi velocity would cancel out of the drift velocity calculation, with electron movement caused by the applied voltage remaining in the calculation.
Also, regarding the mention in the article that Jim quoted to the effect that drift velocity is a function of wire thickness, that is correct, and related specific calculations can be seen in the Wikipedia article on
drift velocity I linked to earlier.
Also, Kijanki, thanks for the excellent and very informative perspective you provided a few posts back on the Poynting Vector, E and H fields, etc.
Jim, re your Fluke 87 multimeter, I have an 87V I purchased a couple of years ago, which I assume is a similar but more recent model. Great meter, although certainly not cheap (I think I paid around $375 for it). When the tips of the leads on mine are held together it reads either 0.1 ohms or 0.2 ohms, depending on exactly how the tips are held against each other. I don’t know what the gauge of the leads is, but given that the total length of the two leads is about 8 feet I suspect the lead resistance is a significant contributor to the 0.1 ohms, together with round-off due to the limited resolution.
I previously had a small Triplett model 310 analog multimeter, which was ridiculously inaccurate (e.g. it indicated my AC as being around 95 volts; the Fluke indicates about 118 or 119 depending on time of day, etc). Which was surprising because I had read that many electricians use that particular Triplett model. Guess I just had a bad example of it.
Regarding fuse resistance, you might find the information on page 2 of
this Littelfuse datasheet to be of interest. For the 4 amp 250 volt slow blow 6.3 x 32 mm glass fuse which is among the many listed, the "cold" resistance (meaning the resistance with negligible current being conducted) is indicated as 0.0311 ohms. So for a design which puts say half the rated max current through it the voltage drop would be a bit more than 0.06 volts.
Best regards,
-- Al