Hi Howard,
Engineers as well as non-engineers can easily conflate some of these terms incorrectly, at least in their wording if not in their understanding. In particular, the terms "differential" and "push-pull" are often used in an excessively loose manner IMO.
As I see it "push-pull" is best used to distinguish an amplifier from one having a "single-ended" output stage, such as a SET (single-ended triode) tube amplifier, or the single-ended pentode tube amplifier Whart referred to.
In the first paragraph of Steve M.’s writeup that you quoted he says:
The bottom line to my interpretation of the description you quoted is that I would characterize the amp as being equivalent to two robustly designed bridged mono amplifiers on a single chassis.
Also, the first full paragraph of the post by GS5556 is worded a bit more ambiguously than it should be, IMO:
Also, the quoted statement could be interpreted to mean that a push-pull design cuts off the current that is conducted by a given output device during part or all of either the positive or negative half of the output waveform. However such cutoff may or may not occur in a push-pull design, depending on the bias class.
Not sure if all of that adds to or lessens the confusion, but FWIW. :-)
Best regards,
-- Al
Engineers as well as non-engineers can easily conflate some of these terms incorrectly, at least in their wording if not in their understanding. In particular, the terms "differential" and "push-pull" are often used in an excessively loose manner IMO.
As I see it "push-pull" is best used to distinguish an amplifier from one having a "single-ended" output stage, such as a SET (single-ended triode) tube amplifier, or the single-ended pentode tube amplifier Whart referred to.
In the first paragraph of Steve M.’s writeup that you quoted he says:
Speaker drive is thus differential or push-pull as well.Yes, the + and - outputs can indeed be thought of as pushing and pulling current, each of them doing so alternately (with one pushing while the other is pulling) on the positive and negative halves of each cycle of the waveform. And yes, the **outputs** (i.e., the "speaker drive") operate in a differential manner. But his wording misleadingly conflates the two terms, IMO. And I’m not sure if his adjacent reference to the DNA-500 being a "fully differential/balanced amplifier from input to output" is worded as precisely as it should be. That wording could be construed to mean that the internal signal paths of the amp are comprised of differential stages, which does not appear to be the case.
The bottom line to my interpretation of the description you quoted is that I would characterize the amp as being equivalent to two robustly designed bridged mono amplifiers on a single chassis.
Also, the first full paragraph of the post by GS5556 is worded a bit more ambiguously than it should be, IMO:
Push-pull means the output stage is has complementary devices that alternately control about half the signal by sourcing and sinking current -- not voltage -- between the positive and negative voltage rails. How much of the signal each control depends on the biasing so both Class A and Class A/B amps are push pull.First, a push-pull amp can be class A or class AB, but a class A amp is not necessarily push-pull. A single-ended audio amplifier of necessity operates its output stage with class A bias. (If it didn’t there would be little or no output for part of each cycle of the waveform). A push-pull amplifier may bias its output stage in either class A or class AB, or it may bias the output stage in class A up to a certain power level, and then switch to AB. (Or it may operate in class D or other classes, but those are different animals altogether). The distinction between these bias classes is explained in this Wikipedia writeup.
Also, the quoted statement could be interpreted to mean that a push-pull design cuts off the current that is conducted by a given output device during part or all of either the positive or negative half of the output waveform. However such cutoff may or may not occur in a push-pull design, depending on the bias class.
Not sure if all of that adds to or lessens the confusion, but FWIW. :-)
Best regards,
-- Al