In the 1850s, Ohm’s law was known as such and was widely considered proved, and alternatives, such as "Barlow’s law", were discredited, in terms of real applications to telegraph system design, as discussed by Samuel F. B. Morse in 1855.[13]
The electron was discovered in 1897 by J. J. Thomson, and it was quickly realized that it is the particle (charge carrier) that carries electric currents in electric circuits. In 1900 the first (classical) model of electrical conduction, the Drude model, was proposed by Paul Drude, which finally gave a scientific explanation for Ohm’s law. In this model, a solid conductor consists of a stationary lattice of atoms (ions), with conduction electrons moving randomly in it. A voltage across a conductor causes an electric field, which accelerates the electrons in the direction of the electric field, causing a drift of electrons which is the electric current. However the electrons collide with and scatter off of the atoms, which randomizes their motion, thus converting the kinetic energy added to the electron by the field to heat(thermal energy). Using statistical distributions, it can be shown that the average drift velocity of the electrons, and thus the current, is proportional to the electric field, and thus the voltage, over a wide range of voltages.