Obviously you haven't got a clue so I'll explain it to you - actually here's a quote from JCarr
The loading resistor value is placed across the phono cartridge's output terminals, which means that any output voltage produced by the cartridge will be forced to flow through the load resistor in the form of current. The higher the load resistor value is, and the farther the net impedance is from the cartridge's internal resistance, the less current will be produced. Conversely, the lower the load resistor value is, and the closer the net impedance is to the cartridge's internal resistance, the more current will be produced.
IMHO, the only time that forcing the cartridge to produce more output current could be justified is when using it into an IV phono stage. Since this kind of phono stage converts input current into output voltage (and is more or less oblivious to input signal voltage per se), it would make sense to feed an IV phono stage with as much input current as possible. An IV phono stage, however, possesses de facto a low impedance input node that receives the output current from the cartridge as a series element (without needing a separate load resistor). This is not how a normal loading resistor works with a typical voltage amplification stage, since there the separate load resistor bleeds the current from the cartridge into ground (thereby wasting that energy). Also, IV phono stages sound qualitatively different to voltage amplification phono stages., and part the reason is that undoubtedly the cartridge is forced to operate into a zero-ohm load (or some other values that is quite close to the cartridge's internal resistance).
In other words comparing the resistive load in a current mode mc input to the the resistive load in a voltage gain mc input is like comparing apples and oranges.
If you cant understand what JCarr wrote, and don't understand the difference between voltage and current then I cant help you any further.