300b lovers


I have been an owner of Don Sachs gear since he began, and he modified all my HK Citation gear before he came out with his own creations.  I bought a Willsenton 300b integrated amp and was smitten with the sound of it, inexpensive as it is.  Don told me that he was designing a 300b amp with the legendary Lynn Olson and lo and behold, I got one of his early pair of pre-production mono-blocks recently, driving Spatial Audio M5 Triode Masters.  

Now with a week on the amp, I am eager to say that these 300b amps are simply sensational, creating a sound that brings the musicians right into my listening room with a palpable presence.  They create the most open vidid presentation to the music -- they are neither warm nor cool, just uncannily true to the source of the music.  They replace his excellent Kootai KT88 which I was dubious about being bettered by anything, but these amps are just outstanding.  Don is nearing production of a successor to his highly regard DS2 preamp, which also will have a  unique circuitry to mate with his 300b monos via XLR connections.  Don explained the sonic benefits of this design and it went over my head, but clearly these designs are well though out.. my ears confirm it. 

I have been an audiophile for nearly 50 years having had a boatload of electronics during that time, but I personally have never heard such a realistic presentation to my music as I am hearing with these 300b monos in my system.  300b tubes lend themselves to realistic music reproduction as my Willsenton 300b integrated amps informed me, but Don's 300b amps are in a entirely different realm.  Of course, 300b amps favor efficient speakers so carefully component matching is paramount.

Don is working out a business arrangement to have his electronics built by an American audio firm so they will soon be more widely available to the public.  Don will be attending the Seattle Audio Show in June in the Spatial Audio room where the speakers will be driven by his 300b monos and his preamp, with digital conversion with the outstanding Lampizator Pacific tube DAC.  I will be there to hear what I expect to be an outstanding sonic presentation.  

To allay any questions about the cost of Don's 300b mono, I do not have an answer. 

 

 

whitestix

Most audiophiles do not realize how stupendously inefficient speakers are. By way of reference, 92 dB/watt/meter is about 1% efficient, or put another way, 100 watts of electricity is converted to one acoustic watt (which is plenty loud).

So where does the other 99% of these pricey watts go? Voice coil heating, which isn't great considering how tiny voice coils are, and how poor thermal coupling to the outside world is. First the voice coil has radiate its heat to the magnet, which is the closest thermal sink, then the warmed magnet has to transfer its heat to the inside of the enclosure.

Since the goal is to create X amount of acoustic watts, not a clumsy form of room heating, even small gains in efficiency are worthwhile, since less voice coil heating is occurring for given acoustic output.

Aside from outright failure, another problem with VC heating is copper's change in resistance with temperature. The resistance goes up with temperature, which might be acceptable, excerpt the time constant is fairly slow, on the order of several seconds, This creates a dynamic slurring which is pretty audible.

I should add I am completing a large-format 2-way speaker this summer, a collaboration with Thom Mackris of Galibier Designs, and an entirely separate project from Don Sachs and the Spatial Audio team. It’s a culmination of the extremely long "Beyond the Ariel" thread over on DIYaudio.com, and the first version was built by Gary Dahl, of Silverdale, Washington.

The woofer is an Alnico-magnet 416 (15" midbass) from Great Plains Audio, the successor to Altec Lansing, using Altec staff and tooling. It’s in a low-diffraction (4" radius curved edge) 4.2 cubic foot closed box. My version will have Bubinga (African rosewood) veneer on all sides.

The high frequencies are from an Athos Audio Yuichi A290 wood horn, with a to-be-determined 1.4" exit monitor-class compression driver. Crossover will be around 700 Hz, most likely Altec-style 2nd-order. The RCF 850 and 18Sound drivers are candidates. I also have a pair of Altec/GPA 288’s in house as fallbacks.

Efficiency will be a true T/S value of 97 dB/meter/watt. With a 27 watt/channel amplifier, headroom should be, in the timeless words of Rolls-Royce, "adequate". Alternatively, sufficient for a studio monitor application.

A 20-watt amplifier and 97 dB/meter loudspeaker was pretty typical for a serious high-end system in the mid-Fifties, so it’s not as weird as it sounds. It’s only weird in the modern context of 200 to 500-watt Class D amplifiers and 85 to 87 dB/meter audiophile speakers.

@lynn_olson - First, let me state that I've really enjoyed your, Don's and Ralph's discussion of amplifier design and tradeoffs.

I've been intrigued by Alan Wright's designs (I'm currently building a line stage preamp inspired by the RTP3D). You've done a good job explaining the downsides of a differential output stage. Alan was a big proponent of this approach so he obviously felt it had advantages. Since he is no longer with us to defend his design, what do you think are the positive attributes of a differential output stage in a tube power amp? 

Ouch.

None.

As you might imagine, Allen was pretty shocked at the direct comparison, since his amp had much more powerful tubes than mine, which had generic Sovtek 300B’s, good and tough, but nowhere in the same league as Vaic’s finest. I mean, a quartet of top-of-the-line 300B’s ain’t cheap, so I never went down that road.

And Allen had just given a presentation at the VSAC, only hours before, on the power of this secret circuit, which he did not fully reveal. It was a very large current source with heat sinks and all. Yes, he could have cranked up the current even more, but the heat sinks and power transistors set an upper limit on the current. It was already close to max output.

He expected that I, an old Tek hand, would be thrilled with Tek-scope type circuit. But I disappointed him. Driving deflection plates (at very high speed) on a CRT is one thing, driving a loudspeaker is quite another. And I’d been designing speakers for Audionics several years before joining Tektronix in 1979.

Scopes are about speed, and the load is a very well-defined capacitance. Cascode differential circuits are the right answer for that problem ... they’re very fast, ideally suited for square waves, and linear enough for the purpose.

Speakers are orders of magnitude slower and are inherently vile loads. The best speakers are the worst loads ... the ones that have near-resistive loads are planar-magnetics with very low BL product (which is magnetic coupling). As you raise BL product, efficiency goes up, they get snappier sounding as the coupling gets better, and ... they also get more reactive, for the simple reason the amplifier is in more intimate contact with the big, sloppy, electromechanical system. Few amplifier designers are aware of this ugly reality. They keep hoping for speakers that can never exist.

The worst thing speakers do is insert speaker colorations (through back-EMFs) into the feedback loop, where they do not belong. Feedback is great at correcting amplifier nonlinearities ... it’s fast and responds in microseconds, just what you want. Speakers have inherent high-Q resonances that are an inescapable part of an electromechanical device. The better the magnetic coupling, the worse it is for the amplifier, which has dirty spurious currents injected into the output node by the speaker.

My approach is to brickwall-isolate these back-EMFs to the final output stage, and not expose the rest of the amplifier to them. I think of the speaker load like attaching a vacuum cleaner motor to the output section ... a source of noise and garbage, nothing good about it. The amp has to ignore this racket and continue to do its job. Feedback amps can get into trouble when the error voltages get very large; this can saturate the input section, and induce additional distortion.

In a more conventional application, like a long-tail Mullard phase splitter, differential circuits have a subtle imbalance that is not obvious at first glance. On the top, or front, side of the circuit, there is the expected Miller capacitance, as per expectation. This is the inverting side ... grid goes down, plate goes up, just like you expect.

The non-inverting side can be drawn (and is better understood) as a cathode follower driving a grounded-grid stage. Rotate the other tube by ninety degrees and it becomes more obvious. This side of the circuit has very little Miller capacitance, making it ten to twenty times faster than the other side. The beautiful symmetry falls apart at (very) high frequencies. As mentioned earlier, it can never enter Class AB drive when one side cuts off, although this is not a problem if the diff-pair is not used as a driver. In a scope, you see clever bootstrap circuits and cascodes to give that extra push at high frequencies.

This is Nelson Pass’ speciality; high speed cascode differential circuits. If that’s your thing, he has an amp or preamp just for you. If you’re using transistors, this is an attractive path.

I should mention that Allen Wright liked a very different sound than I do; he liked fast, snappy, and what sounded to me like thin bass. I like a big, lush, spectacular, CinemaScope sound, the sound I heard in 70mm theaters when I was growing up. (Which had Altec Voice of the Theater speakers behind the screen, along with Altec amplifiers.)

The same applies to my brief encounters with Nelson Pass. He likes it a lot thinner than I do, but with a different tuning than Allen Wright. Kind of hard to describe, actually, since this was all a long time ago. Allen liked the sound he was getting, and he liked his own amp, even at that meeting all those years ago. What I thought was a disaster seemed OK to him. In all honesty, it was a split decision.

I mean, I didn’t like it, nor did Gary Pimm, but we were on a different wavelength than Allen Wright. His designs, like mine, are tuned to his own tastes, and we found out they were surprisingly different. Similarly, I was surprised at Nelson Pass’ tunings, very different than my own.

As it is, Don and I have a bit different preferences, but at least we are still on the same planet, so we get along. From what I heard of Allen’s designs, no way, they are too different, no good way to reconcile the two approaches. But he was a really fun houseguest, and Gary Pimm and I had great discussions with him about everything under the sun.

I miss him very much. He was really funny and one sassy dude with total disrespect for the high and mighty poo-bahs in the industry, which I very much shared.