Ouch.
None.
As you might imagine, Allen was pretty shocked at the direct comparison, since his amp had much more powerful tubes than mine, which had generic Sovtek 300B’s, good and tough, but nowhere in the same league as Vaic’s finest. I mean, a quartet of top-of-the-line 300B’s ain’t cheap, so I never went down that road.
And Allen had just given a presentation at the VSAC, only hours before, on the power of this secret circuit, which he did not fully reveal. It was a very large current source with heat sinks and all. Yes, he could have cranked up the current even more, but the heat sinks and power transistors set an upper limit on the current. It was already close to max output.
He expected that I, an old Tek hand, would be thrilled with Tek-scope type circuit. But I disappointed him. Driving deflection plates (at very high speed) on a CRT is one thing, driving a loudspeaker is quite another. And I’d been designing speakers for Audionics several years before joining Tektronix in 1979.
Scopes are about speed, and the load is a very well-defined capacitance. Cascode differential circuits are the right answer for that problem ... they’re very fast, ideally suited for square waves, and linear enough for the purpose.
Speakers are orders of magnitude slower and are inherently vile loads. The best speakers are the worst loads ... the ones that have near-resistive loads are planar-magnetics with very low BL product (which is magnetic coupling). As you raise BL product, efficiency goes up, they get snappier sounding as the coupling gets better, and ... they also get more reactive, for the simple reason the amplifier is in more intimate contact with the big, sloppy, electromechanical system. Few amplifier designers are aware of this ugly reality. They keep hoping for speakers that can never exist.
The worst thing speakers do is insert speaker colorations (through back-EMFs) into the feedback loop, where they do not belong. Feedback is great at correcting amplifier nonlinearities ... it’s fast and responds in microseconds, just what you want. Speakers have inherent high-Q resonances that are an inescapable part of an electromechanical device. The better the magnetic coupling, the worse it is for the amplifier, which has dirty spurious currents injected into the output node by the speaker.
My approach is to brickwall-isolate these back-EMFs to the final output stage, and not expose the rest of the amplifier to them. I think of the speaker load like attaching a vacuum cleaner motor to the output section ... a source of noise and garbage, nothing good about it. The amp has to ignore this racket and continue to do its job. Feedback amps can get into trouble when the error voltages get very large; this can saturate the input section, and induce additional distortion.
In a more conventional application, like a long-tail Mullard phase splitter, differential circuits have a subtle imbalance that is not obvious at first glance. On the top, or front, side of the circuit, there is the expected Miller capacitance, as per expectation. This is the inverting side ... grid goes down, plate goes up, just like you expect.
The non-inverting side can be drawn (and is better understood) as a cathode follower driving a grounded-grid stage. Rotate the other tube by ninety degrees and it becomes more obvious. This side of the circuit has very little Miller capacitance, making it ten to twenty times faster than the other side. The beautiful symmetry falls apart at (very) high frequencies. As mentioned earlier, it can never enter Class AB drive when one side cuts off, although this is not a problem if the diff-pair is not used as a driver. In a scope, you see clever bootstrap circuits and cascodes to give that extra push at high frequencies.
This is Nelson Pass’ speciality; high speed cascode differential circuits. If that’s your thing, he has an amp or preamp just for you. If you’re using transistors, this is an attractive path.