Which rectifier is better: full wave or bridge?
Full wave is preferred if you are planning a bipolar (+ and -) power supply. If only a single pole, a bridge does have the advantage of the power transformer not needing a center tap. That advantage is because a center tap is never truly centered, so the output from the transformer applied to a full wave is slightly different with each half of the AC waveform. This means the diodes are making slightly different current spikes as they commutate (turn on and off).
That might not make much of a difference, since the best way to snub the circuit (to kill the swept resonance that occurs when the diodes shut off) is to snub the rectifier with a resistor and capacitor in series across the input to the diodes. In case its not clear, the source of 'diode noise' is really the power transformer inductance, interacting with the capacitance in the junctions of the diodes. For this reason, if you use a semiconductor rectifier setup, you really want to keep the leads from the power transformer as short as possible.
If you do that right, you can make the nasty silicon rectifiers perfectly silent; obviating any need for a tube rectifier (who's main advantage is low 'rectifier noise'). I put that last bit in quotes since the transformer is what is causing the noise, reacting to the rectifier.
In the old days it was common practice to put a 0.01uf cap in parallel with semiconductor rectifiers. This does nothing and might actually make the problem worse. Any diode junction, if you plan to snub the rectifier itself, must use a resistor in series with a small capacitance to properly snub the rectifier. But usually you can have great success with just a resistor and small capacitance at the input to the rectifiers instead, since snubbing the transformer is putting out the match rather than the forest fire.