Thanks, Zaikesman. I agree that with the low bearing friction, there may be some movement allowed with the mass system. I cannot say that absolutely no lateral movement is present over the groove. But I can definitely say that it is much reduced, because of the results of greater dynamics, crisper detail, and bass I got with it. I may not even have the best ratio, because I did not try a bunch of different weights. But by luck, I got a pretty good result on my first try.
I have thought of making the weight on a threaded shaft, so it could be adjusted for distance from the pivot. This would complicate the prototype, but production would be just as easy. You may have caused a price increase :^). It would certainly be more applicable to a wider range of cartridges with a system like that. But the spread would have to be equal on both sides, or you'll be changing the anti-skate force.
What type of arm are you using, Zaikesman? If you have a way to fix these weights onto your arm, I could send you a set for evaluation on your TT. I know that they easily go onto a Rega arm. I would like to get some feedback on this. I am already sending a set to Nrchy, who has a Rega RB900. And if Basement wants some to try out on his RB300, he can have some too. They don't cost much, I just get them at the fishing store. If you think you could somehow get them onto whatever type of arm you've got, just email me your address, and I'll send a set to you.
By the way, I think that there is a sort of "mass threshold". As an example, if I am lifting weights, and I keep increasing the weight, at some point I won't be able to lift it. The static moment of inertia will be too high for me to overcome. That is the "threshold" that I am looking for with this system. If the mass is higher than the cartridge can overcome with its suspension, then the theoretical infinite mass can be approximated. As long as the arm can still move freely to track the groove spiral. Since the spiral tracking occurs over a long arc, the low friction of the bearing should allow this to occur, but on the quick dynamic spikes of the groove info, this mass should be sufficient to virtually eliminate arm deflection, if the mass is calculated correctly. Do you agree with this hypothesis?
I have thought of making the weight on a threaded shaft, so it could be adjusted for distance from the pivot. This would complicate the prototype, but production would be just as easy. You may have caused a price increase :^). It would certainly be more applicable to a wider range of cartridges with a system like that. But the spread would have to be equal on both sides, or you'll be changing the anti-skate force.
What type of arm are you using, Zaikesman? If you have a way to fix these weights onto your arm, I could send you a set for evaluation on your TT. I know that they easily go onto a Rega arm. I would like to get some feedback on this. I am already sending a set to Nrchy, who has a Rega RB900. And if Basement wants some to try out on his RB300, he can have some too. They don't cost much, I just get them at the fishing store. If you think you could somehow get them onto whatever type of arm you've got, just email me your address, and I'll send a set to you.
By the way, I think that there is a sort of "mass threshold". As an example, if I am lifting weights, and I keep increasing the weight, at some point I won't be able to lift it. The static moment of inertia will be too high for me to overcome. That is the "threshold" that I am looking for with this system. If the mass is higher than the cartridge can overcome with its suspension, then the theoretical infinite mass can be approximated. As long as the arm can still move freely to track the groove spiral. Since the spiral tracking occurs over a long arc, the low friction of the bearing should allow this to occur, but on the quick dynamic spikes of the groove info, this mass should be sufficient to virtually eliminate arm deflection, if the mass is calculated correctly. Do you agree with this hypothesis?