Thom, first of all, thanks. That was one of the most useful responses I've ever gotten on a discussion board.
I don't know why this didn't strike me earlier, but a few years ago I was involved in some research with a major US National Lab centering around using both active and passive acoustic spectroscopy to determine changes in the texture of materials being heated inside a sealed steel pressure vessel. One of our biggest challenges was acoustic impedance matching, since that determined the degree of penetration of the sound waves (and we were exploring everything from audible to ultrasound) through the vessel, into the materials of interest, back through the vessel, and to our sensor unit. There is actually quite a body of research in this area - I'm going to go back through my notes and references now, since the light that just went on in my head is telling me that proper impedance matching is the key to properly draining vibrations from where they shouldn't be.
The sheet of aluminum you suggested is one way of coupling the dissimilar materials - I'm thinking that the use of specific acoustical coupling materials (think about the gels the techs use when giving you an ultrasound exam to couple the metal probe to your skin) may produce a much better effect.
Thanks for the inspiration - this should be fun!
I don't know why this didn't strike me earlier, but a few years ago I was involved in some research with a major US National Lab centering around using both active and passive acoustic spectroscopy to determine changes in the texture of materials being heated inside a sealed steel pressure vessel. One of our biggest challenges was acoustic impedance matching, since that determined the degree of penetration of the sound waves (and we were exploring everything from audible to ultrasound) through the vessel, into the materials of interest, back through the vessel, and to our sensor unit. There is actually quite a body of research in this area - I'm going to go back through my notes and references now, since the light that just went on in my head is telling me that proper impedance matching is the key to properly draining vibrations from where they shouldn't be.
The sheet of aluminum you suggested is one way of coupling the dissimilar materials - I'm thinking that the use of specific acoustical coupling materials (think about the gels the techs use when giving you an ultrasound exam to couple the metal probe to your skin) may produce a much better effect.
Thanks for the inspiration - this should be fun!