Ok- I have to clear up some misconceptions:
The reality is, the pins of the cartridge are the inverting and non-inverting outputs of the cartridge. In a differential balanced system, there is no ground signal at all- ground exists only for shielding and it is possible to operate a balanced line without shielding (IOW with only 2 wires...). In this case, the ground wire is the shield and is also the tone arm itself which is shielding the wires.
Because if there is an error, it won't be *our* error. You'd be surprised how good the pre-emphasis on older cutting machines actually is. My Westerex system employs hand-picked components to insure accuracy against the serial number of my cutter head.
The balanced source which is the cartridge arrives at the input of the balanced phono section without any transformer. If you refer to my comments above, the inverted ('-' pin) goes to the inverting input (pin 3 of the XLR), the non-inverted output ('+' pin) goes to pin 2 of the XLR and the tone arm ground to pin 1 of the XLR. Very easy, very simple, and nothing 'halved'. The cartridge is normally a balanced source and you get common mode noise rejection like crazy.
To have true balanced, you need 3 signals. A reference level (return), positive polarity, and negative polarity. A cartridge obviously has only 2 pins per channel.
The reality is, the pins of the cartridge are the inverting and non-inverting outputs of the cartridge. In a differential balanced system, there is no ground signal at all- ground exists only for shielding and it is possible to operate a balanced line without shielding (IOW with only 2 wires...). In this case, the ground wire is the shield and is also the tone arm itself which is shielding the wires.
>>RIAA eq deviation no more than 0.05db<<
Why?
Because if there is an error, it won't be *our* error. You'd be surprised how good the pre-emphasis on older cutting machines actually is. My Westerex system employs hand-picked components to insure accuracy against the serial number of my cutter head.
If I recall correctly, when you "balance" a phono cartridge (using a center tapped transformer, for example), you don't get the normal 6dB common mode rejection, because you are "halving" the signal in order to balance it.
The balanced source which is the cartridge arrives at the input of the balanced phono section without any transformer. If you refer to my comments above, the inverted ('-' pin) goes to the inverting input (pin 3 of the XLR), the non-inverted output ('+' pin) goes to pin 2 of the XLR and the tone arm ground to pin 1 of the XLR. Very easy, very simple, and nothing 'halved'. The cartridge is normally a balanced source and you get common mode noise rejection like crazy.