Thanks for the info, Dertonarm . . . I enjoyed reading about these products.
But it's not a matter of "re-inventing the wheel", its a matter of understanding the exact requirements so as to make sure we understand how well the solution fits the application, and the problems we're trying to solve. Because (to use a silly example), putting your tomato plants in the finest laboratory glassware doesn't mean their fruit will taste any better.
Most of these off-the-shelf devices (i.e. the MK26) appear to have a low-pass characteristic that somewhat resembles a Chebyshev response, which trades some pass-band ripple or peaking for increased performance in the stop-band . . . I'd speculate that this is an excellent trade-off for most of the laboratory applications for which they're sold. But for a turntable, the low-frequency peaking of these products may indeed cause some problems. I'm sure they still sound excellent . . .
. . . but if you truly want to do a turntable "right" as you say, then simply sticking i.e. an RX5000 on an off-the-shelf Minus-K platform doesn't cut in my book. Using existing laboratory-instrument technology might be a good approach . . . but if you want the BEST performance like you say . . . a custom-designed product that had its stopband/passband performance tailored specifically to a turntable application is what you should be after.
But it's not a matter of "re-inventing the wheel", its a matter of understanding the exact requirements so as to make sure we understand how well the solution fits the application, and the problems we're trying to solve. Because (to use a silly example), putting your tomato plants in the finest laboratory glassware doesn't mean their fruit will taste any better.
Most of these off-the-shelf devices (i.e. the MK26) appear to have a low-pass characteristic that somewhat resembles a Chebyshev response, which trades some pass-band ripple or peaking for increased performance in the stop-band . . . I'd speculate that this is an excellent trade-off for most of the laboratory applications for which they're sold. But for a turntable, the low-frequency peaking of these products may indeed cause some problems. I'm sure they still sound excellent . . .
. . . but if you truly want to do a turntable "right" as you say, then simply sticking i.e. an RX5000 on an off-the-shelf Minus-K platform doesn't cut in my book. Using existing laboratory-instrument technology might be a good approach . . . but if you want the BEST performance like you say . . . a custom-designed product that had its stopband/passband performance tailored specifically to a turntable application is what you should be after.