Nsgarch explanations are based on the original patent description of skating force and the anti-skating applied. And its too is not a matter of MM-cartridges vs MC-cartridges. Their different basic mechanical characters do contribute some details to the behavior, but not essentially so.
This general patent description from over 60 years back - while not entirely incorrect - is an incomplete model and is simplifying a quite complex issue. All anti-skating devices designed for tonearms are based on this patent description and a simplified model which gives the impression that skating is a constant force which can be nulled with a correct applied counterforce.
Well - it is a neither constant nor linear force and it is depending on tonearm length (with the resulting offset being more or less depending on effective length), stylus shape, size (especially so by older elliptical/conical styli, which do create a "double-side-contact" towards the inner grooves! )and alignment, groove cut, VTF, groove-compliant VTA and tonearm geometry aligned for (2nd zero close to inner grooves give another benefit here... see our sadly deleted tonearm geometry thread from early summer...... if you saved it in time).
As I said before - this is NOT a simple model.
I still believe that it is rather smart not trying to counter a highly variable force with a constant applied anti-force. It is obvious, that there are only very few seconds of the 20-35 minutes of a record side in which the counter-force is really correct and nulling the skating force of the moment. During the rest of the time the anti-skating applies a more or less unwanted side force of its own - just going in the opposite direction.
With the standard "skating vs. anti-skating"- model we have a model which is incomplete and the consequences drawn from it were wrong.
We would need a variable anti-skating force based on the tangential curve of the given tonearm. This antiskating force would then be inverse to the tangential curve and would indeed null the skating force if properly aligned.
Several questions in tonearm geometry today are long set aside as "complete", but are based on models which were simplified and as a result of this simplification did not give the correct results.
But so far we are living with these - less than optimal - results.
Partly due to laziness, lack of knowledge, partly ignorance (this is not meant to offend anyone !!), partly ease of use.
This general patent description from over 60 years back - while not entirely incorrect - is an incomplete model and is simplifying a quite complex issue. All anti-skating devices designed for tonearms are based on this patent description and a simplified model which gives the impression that skating is a constant force which can be nulled with a correct applied counterforce.
Well - it is a neither constant nor linear force and it is depending on tonearm length (with the resulting offset being more or less depending on effective length), stylus shape, size (especially so by older elliptical/conical styli, which do create a "double-side-contact" towards the inner grooves! )and alignment, groove cut, VTF, groove-compliant VTA and tonearm geometry aligned for (2nd zero close to inner grooves give another benefit here... see our sadly deleted tonearm geometry thread from early summer...... if you saved it in time).
As I said before - this is NOT a simple model.
I still believe that it is rather smart not trying to counter a highly variable force with a constant applied anti-force. It is obvious, that there are only very few seconds of the 20-35 minutes of a record side in which the counter-force is really correct and nulling the skating force of the moment. During the rest of the time the anti-skating applies a more or less unwanted side force of its own - just going in the opposite direction.
With the standard "skating vs. anti-skating"- model we have a model which is incomplete and the consequences drawn from it were wrong.
We would need a variable anti-skating force based on the tangential curve of the given tonearm. This antiskating force would then be inverse to the tangential curve and would indeed null the skating force if properly aligned.
Several questions in tonearm geometry today are long set aside as "complete", but are based on models which were simplified and as a result of this simplification did not give the correct results.
But so far we are living with these - less than optimal - results.
Partly due to laziness, lack of knowledge, partly ignorance (this is not meant to offend anyone !!), partly ease of use.