Musichead,
I heard an XV-1S cantilever snap from across the room once. The owner was aligning the cart and had one brief moment of inattention. Be careful, it can be done without really trying.
Agree with Lewm and Syntax that the decision of how much anti-skating to use, if any, must balance sonics vs. the desire to counteract this unavoidable force. Definitely a YMMV, there is no perfect or correct answer.
***
As to Lewm's question about gain blocks, Nick didn't limit his principle to "active devices in the signal path" and I doubt he'd agree to. A poor quality capacitor or resistor will act as a gain block, though it's not active. A crappy power supply will act as a gain block, though it's technically not in the signal path. I wouldn't accept either of these proposed limitations.
Even if we did, I could argue that a cantilever is an active (or at least kinetic) device. It's powered by groove modulations rather than electricity, but if we somehow prevented it from moving there would be zero signal.
It's certainly in the signal path, that's clear. There's nothing else between groove modulations and generator and if we removed the cantilever there would be zero signal. It's not just in the signal path, it IS the signal path.
So, think about what happens INSIDE a cartridge when we apply an external lateral (or vertical) pressure to the tonearm: the cantilever (signal path) is artificially pressured against the elastomers in the suspension.
Press any vibrating rod into any elastomer and what happens to the vibrations?
1. Rise times are slowed, always.
2. Amplitudes are attenuated, always.
The exact effects will vary with frequency and with the materials involved, but this is as clear and direct an example of a gain block as I can imagine, and it's precisely what excessive anti-skating AND excessive VTF do.
FWIW and IME, some cartridges that eventually play well with no A/S do need a little when new. The suspension may need to relax before the cart can track tough passages without a touch of A/S.
***
I wouldn't regard a Graham's damping fluid as a gain block. It's more like an out-of-signal-path resonance filter. Using too much does sound exactly as Syntax described on a 2.2.
***
Excessive A/S can do what Syntax's scary photo showed. Low or zero A/S can never do that under any circumstances.
I heard an XV-1S cantilever snap from across the room once. The owner was aligning the cart and had one brief moment of inattention. Be careful, it can be done without really trying.
Agree with Lewm and Syntax that the decision of how much anti-skating to use, if any, must balance sonics vs. the desire to counteract this unavoidable force. Definitely a YMMV, there is no perfect or correct answer.
***
As to Lewm's question about gain blocks, Nick didn't limit his principle to "active devices in the signal path" and I doubt he'd agree to. A poor quality capacitor or resistor will act as a gain block, though it's not active. A crappy power supply will act as a gain block, though it's technically not in the signal path. I wouldn't accept either of these proposed limitations.
Even if we did, I could argue that a cantilever is an active (or at least kinetic) device. It's powered by groove modulations rather than electricity, but if we somehow prevented it from moving there would be zero signal.
It's certainly in the signal path, that's clear. There's nothing else between groove modulations and generator and if we removed the cantilever there would be zero signal. It's not just in the signal path, it IS the signal path.
So, think about what happens INSIDE a cartridge when we apply an external lateral (or vertical) pressure to the tonearm: the cantilever (signal path) is artificially pressured against the elastomers in the suspension.
Press any vibrating rod into any elastomer and what happens to the vibrations?
1. Rise times are slowed, always.
2. Amplitudes are attenuated, always.
The exact effects will vary with frequency and with the materials involved, but this is as clear and direct an example of a gain block as I can imagine, and it's precisely what excessive anti-skating AND excessive VTF do.
FWIW and IME, some cartridges that eventually play well with no A/S do need a little when new. The suspension may need to relax before the cart can track tough passages without a touch of A/S.
***
I wouldn't regard a Graham's damping fluid as a gain block. It's more like an out-of-signal-path resonance filter. Using too much does sound exactly as Syntax described on a 2.2.
***
Excessive A/S can do what Syntax's scary photo showed. Low or zero A/S can never do that under any circumstances.