Doug:
In most MC cartridges, the coil former and coils are located at the rear end of the cantilever, and are always being pressed into the dampers. Since the amount of pressure affects things like tracking and frequency response, it is the cartridge builder who sets the net pressure (during the building and adjustment process), and the pressure adjustment is locked down by screws so that the value cannot be reduced (or increased) inadvertently. If it does become reduced, chances are that the cartridge will ride too close to the LP surface (low-rider).
Due to the constant pressure between coils and dampers, "slower rise times" and "attenuated amplitudes" simply describe how most MC cartridges work normally. These are not issues that suddenly appear because the user happens to choose antiskating or VTF values that are higher than optimal.
What excess antiskating can do is cause uneven loading of the stylus profile within the LP groove, angular misalignment of the coil former and imbalances in the forces that act on the same. The antiskating effects manifest themselves in the horizontal plane.
Doug, I agree with you that improper VTF is conceptually similar to improper anti-skating. What's different is that, unlike AS, we need a minimum level of VTF to ensure adequate physical tracking of the groove (but uneven stylus loading in the LP groove is no longer an issue). And since VTF forces are typically 5-10 time higher than AS, compared to AS we get a far greater degree of angular misalignment of the coil former and imbalances in the forces that act on the same. And, it is in the vertical plane that we see the effects.
As problems to be solved, AS is far more intractable than VTF. VTF requirements don't change across the LP, so it is possible to understand in advance what value works best and specify this (although changes in ambient temperature and humidity may require some readjustments). In contrast, AS requirements change according to the LP groove radius and groove drag (caused by groove modulation and stylus profile). It is possible to solve the groove radius issue, but the groove drag issue is more doubtful, unless you are using a linear tracking arm or some kind of electronic servo arm.
I suggest that it is much easier to speak of a "right" and "wrong" VTF setting than AS.
cheers, jonathan
In most MC cartridges, the coil former and coils are located at the rear end of the cantilever, and are always being pressed into the dampers. Since the amount of pressure affects things like tracking and frequency response, it is the cartridge builder who sets the net pressure (during the building and adjustment process), and the pressure adjustment is locked down by screws so that the value cannot be reduced (or increased) inadvertently. If it does become reduced, chances are that the cartridge will ride too close to the LP surface (low-rider).
Due to the constant pressure between coils and dampers, "slower rise times" and "attenuated amplitudes" simply describe how most MC cartridges work normally. These are not issues that suddenly appear because the user happens to choose antiskating or VTF values that are higher than optimal.
What excess antiskating can do is cause uneven loading of the stylus profile within the LP groove, angular misalignment of the coil former and imbalances in the forces that act on the same. The antiskating effects manifest themselves in the horizontal plane.
Doug, I agree with you that improper VTF is conceptually similar to improper anti-skating. What's different is that, unlike AS, we need a minimum level of VTF to ensure adequate physical tracking of the groove (but uneven stylus loading in the LP groove is no longer an issue). And since VTF forces are typically 5-10 time higher than AS, compared to AS we get a far greater degree of angular misalignment of the coil former and imbalances in the forces that act on the same. And, it is in the vertical plane that we see the effects.
As problems to be solved, AS is far more intractable than VTF. VTF requirements don't change across the LP, so it is possible to understand in advance what value works best and specify this (although changes in ambient temperature and humidity may require some readjustments). In contrast, AS requirements change according to the LP groove radius and groove drag (caused by groove modulation and stylus profile). It is possible to solve the groove radius issue, but the groove drag issue is more doubtful, unless you are using a linear tracking arm or some kind of electronic servo arm.
I suggest that it is much easier to speak of a "right" and "wrong" VTF setting than AS.
cheers, jonathan