What defines a good tonearm


I'm in the market for a very good tonearm as an upgrade from an SME 345 (309). Most of the tonearms I have used in the past are fixed bearing except for my Grace 704 unipivot. I dont have a problem with the "wobble" of a unipivot, and they seem the simplest to build, so if they are generally at least as good as a fixed pivot, why wouldnt everyone use a unipivot and put their efforts into developing easier vta, azimuth and vtf adjustments, and better arm materials. Or is there some inherent benefit to fixed pivot that makes them worth the extra effort to design and manufacture
manitunc

Unipivots however do not rule the roost by any means when it comes to freedom in the motion of the bearings.

Besides air bearing, unipivot does have the least friction and freedom in motion. I don't care what fancy gimbal bearing you have you cannot beat a needle on a dimple. On top of that, the bearing is preloaded by mass so I don't see how you can have bearing chatter and not to mention adding a drop of oil or lubricant in the reservoir. The problem with unipivot is, obviously, not about lack of movement but TOO MANY planes of movement, namely in the azimuth or torsional motion. Micha Huber of Thales tonearm boasts about the quality of his Swiss made bearing but admits it's still not as low friction as a unipivot. So let's not bring Department of Homeland Security into this. Let's just deal with the real issue of a unipivot.

There are many ways to deal with the azimuth rocking of a unipivot. Traditionally, designers place the counterweight or outrigger/side weights below the pivot point. Much have been written about this so I won't repeat here. In recent years, designers started to use a secondary bearing to assist the main bearing and sometimes, completely eliminates azimuth rocking which also render it no longer a true unipivot and it might not SOUND like a unipivot but I don't own a Basis Vector, Continuum Cobra & Copperhead, so I can't tell. As a unipivot user myself, I can sympathize with Mike's sentiment about the its "freedom to wiggle" that creates its sonic character whether that's an advantage over gimbal bearing or not is something debatable.

my perspective is that the most significant percieved and discussed weakness of a unipivot is actually it's biggest advantage, which is the freedom to wiggle. it is the micro and nano wiggling following the groove unimpeded that gives it the advantage over a fixed/gimbaled bearing pivoted arm which on the micro and nano level cannot follow the groove as well.

Since Talea uses magnet to control azimuth rocking, as I am told, I would have to place it in the same genre with the Graham Phantom. It's an interesting development in tonearm design. The traditional mass below pivot point of stabilizing has a weakness in dynamic due to its pendulum affect and I am curious about the dynamic performance of arms like Talea or Phantom. Mike can report that to use.

As far as I have seen, (and microscopic motion being the nature of LP reproduction) only a gimbaled arm can have the same kind of azimuth accuracy.

Gimbal arm does not guarantee azimuth accuracy. The Triplanar's way azimuth adjustment is placed before the offset angle at the headshell, unless the worm gear is angled accordingly--approximately 23°--that adjustment will affect VTA. Bob Graham brilliantly uses two side weights angled 23° at the bearing housing to prevent that VTA change while changing azimuth. Same concept in the Vector, Cobra, and Copperhead. Smart.

Again, a quasi-unipivot tonearm like Cobra, Copperhead, Cobra and precious few others, that use a rigid secondary ball bearing does NOT exhibit any azimuth motion at all. So let's not lump all of them together.

At the end of the day, all tonearms have some sonic traits that please you and some others don't, just pick your cup of tea or poison.

______
I don't care what fancy gimbal bearing you have you cannot beat a needle on a dimple.

That is of course exactly how the bearings in the Triplanar are built. Except they are about 8 grades harder than the hardest commercial bearings, DHS notwithstanding.

Gimbal arm does not guarantee azimuth accuracy. The Triplanar's way azimuth adjustment is placed before the offset angle at the headshell, unless the worm gear is angled accordingly--approximately 23°--that adjustment will affect VTA.

In this quote, the former statement is in no way supported or detracted by the latter statement. However the juxtaposition suggests that the latter statement is being used to support the former. This type of argument is a logical fallacy known as a red herring. A logical fallacy is by definition, false; this example is not an exception.

It is a simple fact that once set, the azimuth will not/cannot oscillate on a gimbaled arm as it is held in locus. That is a not feature of even the magnetically-stabilized unipivots, although the use of magnetics did dramatically reduce that oscillation and is a major step forward for them.

I use master recordings for reference. Its the only way I have found to really know if you are on the right track. So for me its not a 'cup of tea' thing. I'm just trying to get the LPs to sound as close to the master as I can.