A 10% mismatch ( VSWR of 2.0 ) at RF frequencies ( which digital data is transferred via RF ) can begin to play MAJOR havoc with some circuitry. I know that text-book theory states otherwise, but you have to realize that much of that theory was based on tube circuitry that made use of matchingn networks and tank circuits. Most SS gear does not have this type of circuitry, so loading characteristics become far more critical.
The severity of how much the operation of a device would be affected obviously depends on the stability of the circuitry and whether or not the impedance mismatch was of a reactive or resistive nature. Not only would the sending unit have to deal with the reflections playing games with the output section, signal loss is increased. The resultant decline in detail is increased due to loading via the "back-pressure" within the transmission line. This is not to mention that line loss increases as VSWR increases, compounding the factors involved drastically. As such, ANY type of vswr / signal reflections tend to start a very drastic downward spiral effect once they come into play. This is FAR more apparent with SS gear, but then again, i don't know of any transport or CD player that uses a tubed digital output section.
As such, i would think that all of my experience with RF loading characteristics and impedance mismatches would directly apply to digital data transfer. I would suspect that the output section of most transports / cd players would not be very stable due to lack of a buffer circuit or complex impedance matching network. Therefore, ANY gains in terms of increased power transfer / minimization of reflections would be of multi-fold benefit for the aforementioned reasons. I have not verified this personally, but see no reason why this would differ from any other RF based SS circuit loading up. I really do want to start measuring and experimenting in these areas, but just have not had the time to do so. Sean
>