Isolation transformers - where do I start?


Trying to get into power isolation. This idea seems to have merit because there seems to be less irritating high frequency distortion late at night than in the daytime.
So where do I start?
1)1 big 2kVa isolation transformer? Plug everything into it?

2) PS Audio "ultimate outlet". Plug everything into it?Reduces common mode noise by 40dB.

3) Sola constant voltage transformer 60 VA for the CDP and preamp (which draw 30 va each- I play music very soft - 1/2 watt output on the power amp - so probably much less than that).
- "Highly regulated sine wave outputs with harmonic distortion less than 3%"
- "Output voltage regulated +/- 1% with input voltage fluctuations of +10%/-20%."

4) Power conditioning shielded C-V transformer 140VA for CDP and PRE:
- reduces common mode noise by -120 dB / Normal mode noise -60 dB / <2pf capacitance between input and output wiring.
- Output regulation +/-3% with inout fluctuations +10%/-20%.

5) Get 2kVA for system and also smaller 60 VA for CDP only.

Is a power conditioning transformer ($250 for .14 kVA)better than just an isolation model ($250 for 2 kVA). I realize small capacity so only for CDP or preamp.

Any suggestions would be appreciated.
cdc
Zaikesman: I'm human and make mistakes too. Wanna see some threads and posts to prove it ? : )

As such, most of my comments are based on either first hand experience, common electrical / electronic theory, logical deductions and / or any combo of the above. With that in mind, nothing in audio is set in stone and one REALLY needs to try things out for themselves within the confines of their own system to see what works best. I have seen / heard components and cables sound like hell in one system and really compliment the performance of another system. You really don't know until you try it.

Having said that, i would be curious to see if the outlets that you plugged the amp into were on the same breaker and circuit that the line level gear was plugged into. Can you verify this and let us know ? It is possible that one set of outlets was on one leg of the circuit and the other outlet was on the other leg of the circuit. The fact that you have also introduced a completely new device and source of filtration into the system could also introduce another variable into the equation.

Is there any way to plug the amps directly into the same outlet as the line level gear is plugged into using one heavy duty extension cord with some type of outlet splitter ? I would be curious to see what happened in such a situation. Sean
>
Sean: Your first two paragraphs are a given of course - I was jes' funnin' (and am not one to talk when it comes to freely dispensing 'authoritative advice' that amounts to little more than my take on common sense, bountious caveats included gratis :-). You may still well be correct in your basic presumption here, I just may not be able to take advantage of it.

As I say, the possibility of the second PLC tossing a spanner in the works does exist, but I could test this by plugging it in to same wall duplex as my regular one and trying this hook-up again, and then doing what you suggest in the last paragraph. The outlets in question are confirmed as being on separate breakers, but on the same side of the box.

I did notice something else today though - the two outlets are oriented 180deg. upside-down from one another, so that the polarized wide plug-blade slots are on the left with one duplex, on the right with the other. Since the adaptors I'm using are also polarized, and I am grounding them at the center screws in each case, this means that by necessity, both the 3-prong PLC wall plugs were plugged in oriented in opposite directions. I don't know how wiring behind the outlets looks, so I don't know for sure if this really resulted in the two PLC's being plugged in with reversed respective polarities, but the evidence is suggestive.
Reverse AC polarity within a system can play a lot of games. One may not realize these "problems" exist until the situation is corrected. Once that takes place, the "sonic haze" has been lifted and you can now hear things that were previously not noticed.

I'm sure that you've seen this before, but take a look at this thread about Noise, Hum and AC Polarity to really sort through what's going on with your system. Don't forget that you have to remove ALL interconnects from the system as you can't have any of the component's chassis' tied together. Sean
>
Now that I think about it though, wouldn't the fact that everything else in the system was switched to balanced AC via the PW's iso-trannys render the AC polarity of the power amps moot? Anyway, I realized that it's more difficult than I thought to do the above tests using just the main system AC duplex, due to the fact that I can only install one polarized 3-prong adaptor so that it can be grounded at the center screw (unless, I guess, I run a little piece of wire around from the second adaptor's ground connection - if I get that motivated, I'll see what I can do. I suppose I really should at least replace that one duplex with a proper 3-prong receptacle variety. :-).