If it is simply a matter of lubrication, there's no contest. I've already posted a link to what is the most slippery substance known to man. Since the whole idea of lubricating a bearing is to reduce drag on the motor and increase the longevity of the bearing itself, using the product that reduces friction to the lowest possible levels and has the highest lubrication factor should obviously work best. The fact that this is a thicker substance would also allow it to cling to the bearing rather than just run off of it.
If you want to see what i'm talking about, take a look at this comparison of various lubricants and oil additives. Look at how long Tufoil lasted compared to the 22 other lubricants. While the average failure time for these 22 other formulas was appr 7 minutes, Tufoil lasted 16 DAYS under the same test conditions !!! While the average failure temperature for these 22 other formulas was appr 79 degrees, Tufoil failed at 60 degrees. That is an appr reduction in operating temperature of 25%. Since friction and heat are what cause bearing failure and metal fatigue, it should be common sense that reducing the friction and lowering the operating temperature would produce the longest lifespan for all the materials involved. Sean
>
If you want to see what i'm talking about, take a look at this comparison of various lubricants and oil additives. Look at how long Tufoil lasted compared to the 22 other lubricants. While the average failure time for these 22 other formulas was appr 7 minutes, Tufoil lasted 16 DAYS under the same test conditions !!! While the average failure temperature for these 22 other formulas was appr 79 degrees, Tufoil failed at 60 degrees. That is an appr reduction in operating temperature of 25%. Since friction and heat are what cause bearing failure and metal fatigue, it should be common sense that reducing the friction and lowering the operating temperature would produce the longest lifespan for all the materials involved. Sean
>