>Here is the frequency response of the Ultimate Monitor from >Karl Schuemann
The specs don't tell you enough to be useful.
1. They don't tell you about distortion. The mid-ranges used in my speakers are good for .3% THD @ 96dB/1 meter in their operating range with an increase to 1% at the tweeter cross over frequency where they're 6dB down and distortion should be less. Run at lower frequencies they'll have horrible distortion at much lower output levels - maybe 10% at 70dB one you reach 30Hz. This is especially bad at low frequencies where tight spacing of the equal loudness curves makes the harmonics sound louder than the fundamentals. IM distortion is even more of a problem.
2. They don't tell you what the maximum output level is at those frequencies. Using a pair of 6.5" scan speak mid-bass units (Sd = 145 cm^2, xmax = 5mm) in a sealed box the linear limits are about
88dB @ 35Hz
94dB @ 50Hz
100dB @ 71Hz
3. They don't tell you what the off-axis response looks like. At reasonable listening distances you're picking up more sound from the reverberant field than direct sound. The shape of the off-axis curves has a _huge_ effect on what you hear.
4. The don't quantify thermal compression. This is especially important where you start equalizing. The BOMB is a Linkwitz Transform which allows you to change the F3 point and Q of a speaker thus getting you lower bass extension and less group delay at higher frequencies. Low group delay means "fast bass." The problem is that your power requirements go up. The extra power increases voice coil heating and therefore resistance. That means more thermal compression and changes in the cross-over response with output level than you'd have in a speaker without equalization.
I'm sure the Ultimate Monitors are exceptional speakers although they can't break the laws of physics. If you want natural sounding bass at realistic output levels you need a 3-way or sub-woofers, the later being better because high and low frequency transducers interact with the room differently and therefore work best with different placement.
The specs don't tell you enough to be useful.
1. They don't tell you about distortion. The mid-ranges used in my speakers are good for .3% THD @ 96dB/1 meter in their operating range with an increase to 1% at the tweeter cross over frequency where they're 6dB down and distortion should be less. Run at lower frequencies they'll have horrible distortion at much lower output levels - maybe 10% at 70dB one you reach 30Hz. This is especially bad at low frequencies where tight spacing of the equal loudness curves makes the harmonics sound louder than the fundamentals. IM distortion is even more of a problem.
2. They don't tell you what the maximum output level is at those frequencies. Using a pair of 6.5" scan speak mid-bass units (Sd = 145 cm^2, xmax = 5mm) in a sealed box the linear limits are about
88dB @ 35Hz
94dB @ 50Hz
100dB @ 71Hz
3. They don't tell you what the off-axis response looks like. At reasonable listening distances you're picking up more sound from the reverberant field than direct sound. The shape of the off-axis curves has a _huge_ effect on what you hear.
4. The don't quantify thermal compression. This is especially important where you start equalizing. The BOMB is a Linkwitz Transform which allows you to change the F3 point and Q of a speaker thus getting you lower bass extension and less group delay at higher frequencies. Low group delay means "fast bass." The problem is that your power requirements go up. The extra power increases voice coil heating and therefore resistance. That means more thermal compression and changes in the cross-over response with output level than you'd have in a speaker without equalization.
I'm sure the Ultimate Monitors are exceptional speakers although they can't break the laws of physics. If you want natural sounding bass at realistic output levels you need a 3-way or sub-woofers, the later being better because high and low frequency transducers interact with the room differently and therefore work best with different placement.