Unsound, you may be right. But here's a little exercise that might be of interest to you and/or others that responds to your last quip. I make several references to the 2013 Stereophile list of recommended components, which includes recommended tube amps.
Drill into the Stereophile reports for the Class A recommended tube amps, and in particular John Atkinson's bench test reports. He runs all the tubes amps through the pretty much the same bench tests. I think Graph 1 reports the results of the amp's voltage output across the full frequency spectrum when driving a simulated speaker load that presents varying impedances and phase angles. JA also measures the amp's output impedances off the various output taps.
What you will learn from the exercise is whether the tube amp in question will perform SS like with respect to varying speaker impedances - that is operate like a constant voltage source. As has been said numerous times, this is largely a function of the amp's output impedance. What you will NOT learn is anything about back impedance, other than the reviewer's subjective opinion about how well the amp sounds on the reference speakers used.
Here's an important caveat -- just because the tube amp being reviewed sounds great (or not) on the reviewer's reference speakers could be misinformation on how well the amp will sound on YOUR speakers. This is because the electrical characteristics of YOUR speaker may be very different that the reviewer's reference speakers. And I'm not even talking about the speakers' acoustic performance (i.e., design and build).
My advice to members who are interested in buying a tube amp is to try and grab a bench test report about the amp that will show the types of information disclosed in the JA reports. Look for a tube amp with low output impedance. Presumably, that type of amp will be able to adapt best to changing speaker impedances -- that is act like a constant voltage. Correlatively, the amp will have a DF that will not be in the sub-basement. This is not my subjective opinion -- it's Ohm's Law.
At the same time, try not to go overboard with a tube amp that uses tons of NF for the all reasons that Ralph Karsten, Al (Almarg) and other have already explained. Namely, TIM distortion and odd ordered harmonic distortion.
In addition, the amp should have robust power supply and wpc specs. That may help mitigate some of the problems associated with non-optimal amp and speaker impedance matching. AT the same time, I would try to match the amp with speakers having the flattest possible impedance and phase angle curves.
Finally, and most important -- listen carefully to what looks like might be a good match on paper. Actual results may not line up with projected results. And, as stated many times in this OP, one stat that could affect sound quality is how well the tube amp and speaker can match back impedance.
I sincerely hope this OP has been helpful to the members. I've learned a lot from our techie members and my amateur experiments. I realize that there are technical gaps that I simply cannot bridge because of the multitude of electrical variables in play. Nevertheless, I think one can avoid making highly probable bad matches if certain key electrical attributes that simply don't mesh well are avoided.
Best,
Bruce
Drill into the Stereophile reports for the Class A recommended tube amps, and in particular John Atkinson's bench test reports. He runs all the tubes amps through the pretty much the same bench tests. I think Graph 1 reports the results of the amp's voltage output across the full frequency spectrum when driving a simulated speaker load that presents varying impedances and phase angles. JA also measures the amp's output impedances off the various output taps.
What you will learn from the exercise is whether the tube amp in question will perform SS like with respect to varying speaker impedances - that is operate like a constant voltage source. As has been said numerous times, this is largely a function of the amp's output impedance. What you will NOT learn is anything about back impedance, other than the reviewer's subjective opinion about how well the amp sounds on the reference speakers used.
Here's an important caveat -- just because the tube amp being reviewed sounds great (or not) on the reviewer's reference speakers could be misinformation on how well the amp will sound on YOUR speakers. This is because the electrical characteristics of YOUR speaker may be very different that the reviewer's reference speakers. And I'm not even talking about the speakers' acoustic performance (i.e., design and build).
My advice to members who are interested in buying a tube amp is to try and grab a bench test report about the amp that will show the types of information disclosed in the JA reports. Look for a tube amp with low output impedance. Presumably, that type of amp will be able to adapt best to changing speaker impedances -- that is act like a constant voltage. Correlatively, the amp will have a DF that will not be in the sub-basement. This is not my subjective opinion -- it's Ohm's Law.
At the same time, try not to go overboard with a tube amp that uses tons of NF for the all reasons that Ralph Karsten, Al (Almarg) and other have already explained. Namely, TIM distortion and odd ordered harmonic distortion.
In addition, the amp should have robust power supply and wpc specs. That may help mitigate some of the problems associated with non-optimal amp and speaker impedance matching. AT the same time, I would try to match the amp with speakers having the flattest possible impedance and phase angle curves.
Finally, and most important -- listen carefully to what looks like might be a good match on paper. Actual results may not line up with projected results. And, as stated many times in this OP, one stat that could affect sound quality is how well the tube amp and speaker can match back impedance.
I sincerely hope this OP has been helpful to the members. I've learned a lot from our techie members and my amateur experiments. I realize that there are technical gaps that I simply cannot bridge because of the multitude of electrical variables in play. Nevertheless, I think one can avoid making highly probable bad matches if certain key electrical attributes that simply don't mesh well are avoided.
Best,
Bruce