Transformer is basically an impedance converter. To set proper conversion ratio we need to know speaker's impedance and recommended tube "plate load impedance". If we don't know speaker's impedance we can measure DC resistance and multiply it by about 1.25 (impedance is mostly resistive). Plate loading we can find in tube's datasheet (or plate-to-plate loading impedance in Push-Pull configuration).
We need our transformer to reflect speaker impedance (secondary side) to plate loading impedance (primary side). Transformer impedance ratio is a square of turns ratio.
Example: Plate load impedance is 10,000 ohms and speaker impedance is 4 ohms. Necessary transformer impedance ratio will be 2,500. Turns ratio will be square root of 2500 = 50. Voltage and current ratios will follow turns ratio. Secondary voltage change will be 50 times smaller than primary but secondary (speaker's) load current will be 50 times smaller on primary side.
As you can see it would require very big voltage changes on primary to get decent output voltage, hence power delivered to speaker. We can lower this ratio by finding tubes operating at lower plate loading impedance or to put tubes in parallel.
We need our transformer to reflect speaker impedance (secondary side) to plate loading impedance (primary side). Transformer impedance ratio is a square of turns ratio.
Example: Plate load impedance is 10,000 ohms and speaker impedance is 4 ohms. Necessary transformer impedance ratio will be 2,500. Turns ratio will be square root of 2500 = 50. Voltage and current ratios will follow turns ratio. Secondary voltage change will be 50 times smaller than primary but secondary (speaker's) load current will be 50 times smaller on primary side.
As you can see it would require very big voltage changes on primary to get decent output voltage, hence power delivered to speaker. We can lower this ratio by finding tubes operating at lower plate loading impedance or to put tubes in parallel.